CAZyChip: Dynamic assessment of exploration of glycoside hydrolases in microbial diversity ecosystems.
Ontology highlight
ABSTRACT: Microorganisms constitute a reservoir of enzymes involved in environmental carbon cycling and degradation of plant polysaccharides since they produce a vast variety of glycoside hydrolases. The CAZyChip was developed to allow a rapid characterization at transcriptomic level of these GHs and to identify enzymes acting on hydrolysis of polysaccharide or glycans. This DNA biochip contains the signature of 55,220 bacterial GHs available in the CAZy database. Probes were designed using two softwares and microarrays were directly synthetized using the in situ ink-jet technology. CAZyChip specificity and reproducibility was validated by hybridization of known GHs RNA extracted from recombinant E. coli strains, previously characterized by a functional metagenomic approach. The GHs arsenal was also studied in bioprocess conditions using rumen derived microbiota. The CAZyChip appears to be a user friendly tool for profiling the expression of a large variety of GHs. It can be used to study temporal variations of functional diversity, thereby facilitating the identification of new efficient candidates for enzymatic conversions from various ecosystems.
ORGANISM(S): Bacteria
PROVIDER: GSE80173 | GEO | 2016/12/01
SECONDARY ACCESSION(S): PRJNA318173
REPOSITORIES: GEO
ACCESS DATA