Dpy30 Is Critical for Maintaining the Identity and Function of Adult Hematopoietic Stem Cells
Ontology highlight
ABSTRACT: As the major histone H3K4 methyltransferases in mammals, the Set1/Mll complexes play important roles in animal development and are increasingly associated with diseases including hematological malignancies. The role of H3K4 methylation activity of these complexes, however, remains elusive in fate determination of hematopoietic stem and progenitor cells (HSCs and HPCs). Here we address this question by generating a conditional knockout mouse for Dpy30, which is a common core subunit of all Set1/Mll complexes and facilitates genome-wide H3K4 methylation in cells. Dpy30 loss in the adult hematopoietic system results in severe pancytopenia but striking accumulation of HSCs and early HPCs that are defective in multilineage reconstitution, suggesting a differentiation block. In mixed bone marrow chimeras, Dpy30-deficient HSCs cannot differentiate or efficiently upregulate lineage-regulatory genes, and eventually fail to sustain for long term with significant loss of HSC signature gene expression. Our molecular analyses reveal that Dpy30 directly regulates H3K4 methylation and expression of key transcriptional factors, cofactors, and chromatin modulators involved in HSC function. Collectively, our results establish a critical role of Dpy30 and the H3K4 methylation activity of the Set1/Mll complexes for maintaining the identity and function of adult hematopoietic stem cells.
Project description:Epigenetic mechanisms including histone modifications have emerged as important factors influencing cell fate determination. The functional role of H3K4 methylation, however, remains largely unclear in the maintenance and differentiation of hematopoietic stem/progenitor cells (HSC/HPCs). Here we show that DPY30, a shared core subunit of the SET1/MLL family methyltransferase complexes and a facilitator of their H3K4 methylation activity, is important for ex vivo proliferation and differentiation of human CD34+ HPCs. DPY30 promotes HPC proliferation by directly regulating the expression of genes critical for cell proliferation. Interestingly, while DPY30 knockdown (KD) in HPCs impaired their differentiation into the myelomonocytic lineage, it potently promoted hemoglobin production and affected the kinetics of their differentiation into the erythroid lineage. In an in vivo model, we show that morpholino-mediated dpy30 KD resulted in severe defects in the development of the zebrafish hematopoietic system, which could be partially rescued by co-injection of dpy30 mRNA. Taken together, our results establish a critical role of DPY30 in the proliferation and appropriate differentiation of hematopoietic progenitor cells as well as in animal hematopoiesis. Finally, we also demonstrate a crucial role of DPY30 in the growth of several MLL1-fusion-mediated leukemia cell lines. Total RNAs from control (scr) or knockdown (hD2, hD5) cells before and after culturing under condition promoting myelomonocytic differentiation were subjected to Illumina microarray analyses.
Project description:Epigenetic mechanisms including histone modifications have emerged as important factors influencing cell fate determination. The functional role of H3K4 methylation, however, remains largely unclear in the maintenance and differentiation of hematopoietic stem/progenitor cells (HSC/HPCs). Here we show that DPY30, a shared core subunit of the SET1/MLL family methyltransferase complexes and a facilitator of their H3K4 methylation activity, is important for ex vivo proliferation and differentiation of human CD34+ HPCs. DPY30 promotes HPC proliferation by directly regulating the expression of genes critical for cell proliferation. Interestingly, while DPY30 knockdown (KD) in HPCs impaired their differentiation into the myelomonocytic lineage, it potently promoted hemoglobin production and affected the kinetics of their differentiation into the erythroid lineage. In an in vivo model, we show that morpholino-mediated dpy30 KD resulted in severe defects in the development of the zebrafish hematopoietic system, which could be partially rescued by co-injection of dpy30 mRNA. Taken together, our results establish a critical role of DPY30 in the proliferation and appropriate differentiation of hematopoietic progenitor cells as well as in animal hematopoiesis. Finally, we also demonstrate a crucial role of DPY30 in the growth of several MLL1-fusion-mediated leukemia cell lines.
Project description:Profound distinctions exist between fetal liver (FL) and adult bone marrow (BM) hematopoietic stem cells (HSCs) in many aspects. Previously we showed that efficient H3K4 methylation plays an essential role in the differentiation and long-term maintenance of adult hematopoietic stem cell. However, its role in fetal hematopoiesis is unknown. Here, we show that loss of Dpy30, a core subunit of Set1/Mll complexes that responsible for efficient global H3K4 methylation, in FL results in embryonic anemia as well as the accumulation of HSCs that are defective in multiple lineage reconstitution as shown in mixed chimera assays. Global gene expression analyses identified 21 genes co-downregulated by Dpy30 loss in FL and BM HSCs, among which we further demonstrate that Igdcc4 and Ntpcr are important for efficient colony formation capacity of both FL and BM HSCs in vitro. This study suggests that Dpy30 and certain Dpy30 targets are fundamentally important in regulating HSCs regardless of developmental stages, and that the identified common target genes may provide new insight into the molecular regulation of hematopoiesis.
Project description:Epigenetic modulators are being recognized as attractive targets for potential cancer treatment. SET1/MLL complexes are the major H3K4 methyltransferase complexes in mammals. The DPY30 subunit is associated with these complexes by forming a dimer that directly binds to the ASH2L subunit in the complexes and facilitates methylation. We have previously established an important role of DPY30 in certain hematologic malignancies including MLL-rearranged leukemia and Burkitt’s lymphoma, but the domain on DPY30 that regulates cancer growth is not evident. Moreover, the potential of pharmacologically targeting this chromatin modulator to inhibit cancer has not been explored. Here we have developed a peptide-based strategy to specifically target DPY30 activity. We have designed cell-penetrating peptides that can either bind to DPY30 or show defective or enhanced binding to DPY30. The DPY30-binding peptides, but not the non-binding peptide, inhibit DPY30’s activity in interacting with ASH2L and in enhancing H3K4 methylation. Treatment with the DPY30-binding, but not the non-binding, peptide significantly inhibited the growth of MLL-rearranged leukemia and other MYC-dependent hematologic cancer cells including Burkitt’s lymphoma cells. These results strongly support a critical role of the ASH2L-binding groove of DPY30 in promoting the growth of certain blood cancers, and also demonstrate a proof-of-principle for the feasibility of pharmacologically targeting the ASH2L-binding groove of DPY30 for potential cancer inhibition.
Project description:Methylation of lysine 4 at histone H3 (H3K4) at promoters is tightly linked to transcriptional regulation in human cells. At least six different COMPASS-like multi-subunit (SET1/MLL) complexes have been described that contain methyltransferase activity towards H3K4, but a comprehensive and quantitative analysis of these SET1/MLL complexes is lacking. We applied label-free quantitative mass spectrometry to determine the subunit composition and stoichiometry of the human SET1/MLL complexes. Peptides were applied to online nanoLC-MS/MS, using a 120 min acetonitrile gradient (5.6 - 76%). Mass spectra were recorded on an LTQ-Orbitrap-Velos mass spectrometer (Thermo) selecting the 15 most intense precursor ions of every full scan for fragmentation. Raw data were analyzed using MaxQuant 1.3.0.5, with label-free quantification (LFQ), match between runs (between triplicates) and the iBAQ algorithm enabled. MaxQuant default settings were used for peptide identification; Enzyme: Trypsin/P, MS tolerance (FTMS): 6 ppm, max missed cleavages: 2, max charge: 7, MS/MS tolerance (ITMS): 0.5 Da, Peptide FDR: 0.01 and Protein FDR: 0.01. Normalized mass spectrometric intensities (LFQ intensities) were compared between the GFP-tagged and control sample, using an adapted permutation-based false discovery rate (FDR) t-test in Perseus (MaxQuant package).
Project description:Global analysis of H3K4 methylation defines MLL family member targets and points to a role for MLL1-mediated H3K4 methylation in the regulation of transcriptional initiation by RNA polymerase II A common landmark of activated genes is the presence of trimethylation on lysine 4 of histone H3 (H3K4) at promoter regions. The Set1/COMPASS was the founding member and the only H3K4 methylases in S. cerevisiae, however, in mammals at least six H3K4 methylases Set1A/B and MLL1-4 are found in COMPASS-like complexes capable of methylating H3K4. To gain further insight into the different roles and functional targets for the H3K4 methylases, we have undertaken a genome-wide analysis of H3K4 methylation pattern in wild-type Mll1+/+ and Mll1-/- mouse fibroblasts (MEFs). We found that Mll1 is required for the H3K4 trimethylation of less than 5% of promoters carrying this modification. Many of these genes, which include developmental regulators such as Hox genes show decreased levels of RNA polymerase II recruitment and expression concomitant with the loss of H3K4 methylation. Although Mll1 is only required for the methylation of a subset of Hox genes, Menin, a component of the Mll1 and Mll2 complexes, is required for the overwhelming majority of H3K4 methylation at Hox loci. However, the loss of MLL3/4 and/or the Set1 complexes have little to no effect on the Hox loci H3K4 methylation or expression levels in these MEFs. Together these data provide insight into redundancy and specialization of COMPASS-like complexes in mammals and provide evidence on a possible role for Mll1-mediated H3K4 methylation in the regulation of transcriptional initiation. Expression arrays were done with Mll1+/+ and Mll1-/- mouse embryonic fibroblasts. Four replicates were done (dyes were swapped). DNA was hybridized to Agilent Mouse Whole Genome Expression Arrays (4x44k).
Project description:The Gata2 transcription factor is a pivotal regulator of hematopoietic stem cell (HSC) development and maintenance. Gata2 functions in the embryo during endothelial cell to hematopoietic cell transition (EHT) to affect hematopoietic cluster, HPC and HSC formation. Although previous studies of cell populations phenotypically enriched in HPCs and HSCs show expression of Gata2, there has been no direct study of Gata2 expressing cells during normal hematopoiesis. In this study we generate a Gata2 Venus reporter mouse model with unperturbed Gata2 expression to examine the hematopoietic function and transcriptome of Gata2 expressing and nonexpressing cells. Gata2Venus- HPCs 1 replicate, Gata2Venus+ HPCs 1 replicate
Project description:Global analysis of H3K4 methylation defines MLL family member targets and points to a role for MLL1-mediated H3K4 methylation in the regulation of transcriptional initiation by RNA polymerase II A common landmark of activated genes is the presence of trimethylation on lysine 4 of histone H3 (H3K4) at promoter regions. The Set1/COMPASS was the founding member and the only H3K4 methylases in S. cerevisiae, however, in mammals at least six H3K4 methylases Set1A/B and MLL1-4 are found in COMPASS-like complexes capable of methylating H3K4. To gain further insight into the different roles and functional targets for the H3K4 methylases, we have undertaken a genome-wide analysis of H3K4 methylation pattern in wild-type Mll1+/+ and Mll1-/- mouse fibroblasts (MEFs). We found that Mll1 is required for the H3K4 trimethylation of less than 5% of promoters carrying this modification. Many of these genes, which include developmental regulators such as Hox genes show decreased levels of RNA polymerase II recruitment and expression concomitant with the loss of H3K4 methylation. Although Mll1 is only required for the methylation of a subset of Hox genes, Menin, a component of the Mll1 and Mll2 complexes, is required for the overwhelming majority of H3K4 methylation at Hox loci. However, the loss of MLL3/4 and/or the Set1 complexes have little to no effect on the Hox loci H3K4 methylation or expression levels in these MEFs. Together these data provide insight into redundancy and specialization of COMPASS-like complexes in mammals and provide evidence on a possible role for Mll1-mediated H3K4 methylation in the regulation of transcriptional initiation. Chromatin Immunoprecipitation was performed with antibodies for histone 3 lysine 4 trimethylation, histone 3, and PolII in Mll1+/+ and Mll1-/- mouse embryonic fibroblasts. DNA was hybridized to a custom Agilent tiling array (4x44k format) that covers three of the hox regions (A,B,D) and a collection of other genes.
Project description:It remains largely unclear if efficient H3K4 methylation, an epigenetic modification associated with gene activation, regulates fate determination of the postnatal neural stem cells (NSCs). By inactivating the Dpy30 subunit of the major mammalian H3K4 methyltransferase complexes in specific regions of mouse brain, we demonstrate a crucial role of efficient H3K4 methylation in maintaining both the self-renewal and differentiation capacity of postnatal NSCs. Loss Dpy30 disrupts the development of dentate gyrus and subventricular zone, the major regions for postnatal NSC activities. Dpy30 is indispensable for sustaining the self-renewal of NSCs in a cell-intrinsic manner. Dpy30 also enables the differentiation of mouse and human neural progenitor cells to neuronal and glial lineages. Dpy30 directly regulates H3K4 methylation and the induction of several genes critical in neurogenesis. These findings link a prominent epigenetic mechanism of gene expression to the fundamental properties of NSCs, and may have implications in neurodevelopmental disorders.
Project description:Global analysis of H3K4 methylation defines MLL family member targets and points to a role for MLL1-mediated H3K4 methylation in the regulation of transcriptional initiation by RNA polymerase II A common landmark of activated genes is the presence of trimethylation on lysine 4 of histone H3 (H3K4) at promoter regions. The Set1/COMPASS was the founding member and the only H3K4 methylases in S. cerevisiae, however, in mammals at least six H3K4 methylases Set1A/B and MLL1-4 are found in COMPASS-like complexes capable of methylating H3K4. To gain further insight into the different roles and functional targets for the H3K4 methylases, we have undertaken a genome-wide analysis of H3K4 methylation pattern in wild-type Mll1+/+ and Mll1-/- mouse fibroblasts (MEFs). We found that Mll1 is required for the H3K4 trimethylation of less than 5% of promoters carrying this modification. Many of these genes, which include developmental regulators such as Hox genes show decreased levels of RNA polymerase II recruitment and expression concomitant with the loss of H3K4 methylation. Although Mll1 is only required for the methylation of a subset of Hox genes, Menin, a component of the Mll1 and Mll2 complexes, is required for the overwhelming majority of H3K4 methylation at Hox loci. However, the loss of MLL3/4 and/or the Set1 complexes have little to no effect on the Hox loci H3K4 methylation or expression levels in these MEFs. Together these data provide insight into redundancy and specialization of COMPASS-like complexes in mammals and provide evidence on a possible role for Mll1-mediated H3K4 methylation in the regulation of transcriptional initiation.