Neurospora crassa genome organization requires subtelomeric facultative heterochromatin
Ontology highlight
ABSTRACT: Facultative heterochromatin in the filamentous fungus Neurospora crassa is identified by the repressive histone mark H3K27me3 and is primarily subtelomeric, while constitutive heterochromatin, marked by the DIM-5-catalzyed H3K9me3, is found at centromeres, telomeres, and smaller dispersed regions. In strains lacking constitutive heterochromatin (e.g., Δdim-5), H3K27me2/3 relocalizes to the regions formerly marked by H3K9me3. H3K27me3 is catalyzed by the SET-7 histone methyltransferase subunit of the Polycomb Repressive Complex 2 (PRC2); another PRC2 member, Neurospora p55 (NPF) regulates subtelomeric H3K27me2/3. Despite the de-repression of >70 genes, a Δset-7 strain has no distinguishable phenotype. To investigate the facultative heterochromatin contribution to genome organization, we performed high-throughput “chromosome conformation capture” (Hi-C) on mutants with impacted H3K27me2/3 deposition. A Δset-7 strain has decreased inter-/intra-subtelomeric contacts among others; this pattern is mirrored in a Δnpf strain, which lacks subtelomeric H3K27me3. In a Δset-7 strain, telomere bundles were often uncoupled from the nuclear membrane and de-repressed genes were subtelomeric. The chromosome conformation of a Δset-7;Δdim-5 double mutant was similar to Δset-7, suggesting that facultative heterochromatin relocalization does not compensate for H3K9me3 loss and rescue the Neurospora genome organization in strains with defective constitutive heterochromatin.
ORGANISM(S): Neurospora crassa
PROVIDER: GSE82222 | GEO | 2016/10/27
SECONDARY ACCESSION(S): PRJNA324378
REPOSITORIES: GEO
ACCESS DATA