Project description:The CENP-T/-W histone fold complex, as an integral part of the inner kinetochore, is essential for building a proper kinetochore at the centromere in order to direct chromosome segregation during mitosis. Notably, CENP-T/-W is not inherited at centromeres and new deposition is absolutely required at each cell cycle for kinetochore function. However, the mechanisms underlying this new deposition of CENP-T/-W at centromeres are unclear. Here, we find that CENP-T deposition at centromeres is uncoupled from DNA synthesis. We identify Spt16 and SSRP1, subunits of the H2A-H2B histone chaperone FACT, as CENP-W binding partners through a proteomic screen. We find that the C-terminal region of Spt16 binds specifically to the histone fold region of CENP-T/-W. Furthermore, depletion of Spt16 impairs CENP-T and CENP-W deposition at endogenous centromeres and site directed targeting of Spt16 alone is sufficient to ensure local de novo CENP-T accumulation. We propose a model in which the FACT chaperone stabilizes the soluble CENP-T/-W complex in the cell and promotes dynamics of exchange, enabling CENP-T/-W deposition at centromeres.
Project description:The heterodimeric histone chaperone FACT consisting of SSRP1 and SPT16 contributes to dynamic nucleosome rearrangements during various DNA-dependent processes including transcription. In search of post-translational modifications that may regulate the activity of FACT, SSRP1 and SPT16 were isolated from Arabidopsis cells and analysed by mass spectrometry. Four acetylated lysine residues could be mapped within the basic C-terminal region of SSRP1, while three phosphorylated serine/threonine residues were identified in the acidic C-terminal region of SPT16. Mutational analysis of the SSRP1 acetylation sites revealed only mild effects. However, phosphorylation of SPT16 that is catalysed by protein kinase CK2, modulates histone interactions. A non-phosphorylatable version of SPT16 displayed reduced histone binding and (unlike the phosphorylatable wild-type and phosphomimic versions) proved inactive in complementing the growth and developmental phenotypes of spt16 mutant plants. In plants expressing the non-phosphorylatable SPT16 version we detected at a subset of genes enrichment of histone H3 directly upstream of RNA polymerase II transcriptional start sites (TSSs) in a region that usually is nucleosome-depleted. This is associated with altered transcript levels, suggesting that some genes require phosphorylation of the SPT16 acidic region for establishing the correct nucleosome occupancy at the TSS as a prerequisite for proper transcription.
Project description:Histone acetylation regulates gene expression, yet the functional contributions of the numerous histone acetyltransferases (HATs) to gene expression and their relationships with each other remain largely unexplored. The central role of the putative HAT-containing TAF1 subunit of TFIID in gene expression raises the fundamental question as to what extent, if any, TAF1 contributes to acetylation in vivo and to what extent it is redundant with other HATs. Our findings herein do not support the basic tenet that TAF1 is a major HAT in Saccharomyces cerevisiae, nor do we find that TAF1 is functionally redundant with other HATs, including Gcn5, Elp3, Hat1, Hpa2, Sas3, and Esa1, which is in contrast to previous conclusions regarding Gcn5. Our findings do reveal that of these HATs, only Gcn5 and Esa1 contribute substantially to gene expression genome wide. Interestingly, histone acetylation at promoter regions throughout the genome does not require TAF1 or RNA polymerase II, indicating that most acetylation is likely to precede transcription and not depend upon it. TAF1 function has been linked to Bdf1, which binds TFIID and acetylated histone H4 tails, but no linkage between TAF1 and the H4 HAT Esa1 has been established. Here, we present evidence for such a linkage through Bdf1.
Project description:Mot1 is a conserved and essential Swi2/Snf2 ATPase that can remove TATA-binding protein (TBP) from DNA using ATP hydrolysis, and in so doing exerts global effects on transcription. Spt16 is also essential and functions globally in transcriptional regulation as a component of the FACT histone chaperone complex. Here we demonstrate that Mot1 and Spt16 regulate a largely overlapping set of genes in Saccharomyces cerevisiae. As expected, Mot1 was found to control TBP levels at co-regulated promoters. In contrast, Spt16 did not affect TBP recruitment. Interestingly, Mot1 was required for Spt16 recruitment to co-activated promoters. In contrast, Spt16 levels in gene coding regions were unaffected by Mot1 as well as RNA polymerase II density. The co-localization of Mot1 and Spt16 at promoters and the broad overlap in the sets of genes they control is consistent with physical and genetic interactions between them. The data support a model in which these factors participate in a regulatory pathway in which Mot1 acts upstream of Spt16. Tiling arrays covering the entirety of the S.cerevisiae genome were used to identify the effects of Mot1 and Spt16 on RNA expression genome-wide. All samples were done in biological duplicates. The average signal from the spt16-197 samples was compared to the SPT16-WT to determine changes in expression. The average signal from the double mutant mot1-42 spt16-197 was compared to both SPT16-WT and MOT1-WT. The MOT1-WT data was previously published by our lab and is available at GEO accession GSM456548. Comparisons were made from our Spt16 dataset to the previously published MOT1-WT and mot1-42 data, and the entire study is available at GEO accession GSE18283. Differential RNA (spt16-197/SPT16): spt16-197_over_SPT16-WT.bar Differential RNA (mot1-42 spt16-197/SPT16): dbl_mut_over_SPT16-WT.bar Differential RNA (mot1-42 spt16-197/MOT1): dbl_mut_over_MOT1-WT.bar
Project description:Methods to analyze the intrinsic physical properties of cells - for example, size, density, rigidity, or electrical properties - are an active area of interest in the microfluidics community. Although the physical properties of cells are determined at a fundamental level by gene expression, the relationship between the two remains exceptionally complex and poorly characterized, limiting the adoption of intrinsic separation technologies. To improve our current understanding of how a cell's genotype maps to a measurable physical characteristic and quantitatively investigate the potential of using these characteristics as biomarkers, we have developed a novel screen that combines microfluidic cell sorting with high-throughput sequencing and the haploid yeast deletion library to identify genes whose functions modulate one such characteristic - intrinsic electrical properties. Using this screen, we are able to establish a high-content electrical profile of the haploid yeast gene deletion strains. We find that individual genetic deletions can appreciably alter the electrical properties of cells, affecting ~10% of the 4432 gene deletion strains screened. Additionally, we find that gene deletions affecting electrical properties in specific ways (i.e. increasing or decreasing effective conductivity at higher or lower electric field frequencies) are strongly associated with an enriched subset of fundamental biological processes that can be traced to specific pathways and complexes. The screening approach demonstrated here and the attendant results are immediately applicable to the intrinsic separations community.
Project description:The histone chaperone FACT plays important roles in essentially every chromatin-associated process and is an important indirect target of the curaxin class of anti-cancer drugs. Curaxins are aromati? compounds that intercalate into DNA and can trap FACT in bulk chromatin, thus interfering with its distribution and its functions in cancer cells. Recent studies have provided mechanistic insight into how FACT and curaxins cooperate to promote unfolding of nucleosomes and chromatin fibers, resulting in genome-wide disruption of contact chromatin domain boundaries, perturbation of higher order chromatin organization, and global disregulation of gene expression. Here, we discuss the implications of these insights for cancer biology.
Project description:FACT (FAcilitates Chromatin Transcription/Transactions) is a histone chaperone that can destabilize or assemble nucleosomes. Acetylation of histone H3-K56 weakens a histone-DNA contact that is central to FACT activity, suggesting that this modification could affect FACT functions. We tested this by asking how mutations of H3-K56 and FACT affect nucleosome reorganization activity in vitro, and chromatin integrity and transcript output in vivo Mimics of unacetylated or permanently acetylated H3-K56 had different effects on FACT activity as expected, but the same mutations had surprisingly similar effects on global transcript levels. The results are consistent with emerging models that emphasize FACT's importance in establishing global chromatin architecture prior to transcription, promoting transitions among different states as transcription profiles change, and restoring chromatin integrity after it is disturbed. Optimal FACT activity required the availability of both modified and unmodified states of H3-K56. Perturbing this balance was especially detrimental for maintaining repression of genes with high nucleosome occupancy over their promoters and for blocking antisense transcription at the +1 nucleosome. The results reveal a complex collaboration between H3-K56 modification status and multiple FACT functions, and support roles for nucleosome reorganization by FACT before, during, and after transcription.
Project description:The Hif1 protein in the yeast Saccharomyces cerevisie is an evolutionarily conserved H3/H4-specific chaperone and a subunit of the nuclear Hat1 complex that catalyzes the acetylation of newly synthesized histone H4. Hif1, as well as its human homolog NASP, has been implicated in an array of chromatin-related processes including histone H3/H4 transport, chromatin assembly and DNA repair. In this study, we elucidate the functional aspects of Hif1 Initially we establish the wide distribution of Hif1 homologs with an evolutionarily conserved pattern of four tetratricopeptide repeats (TPR) motifs throughout the major fungal lineages and beyond. Subsequently, through targeted mutational analysis, we demonstrate that the acidic region that interrupts the TPR2 is essential for Hif1 physical interactions with the Hat1/Hat2-complex, Asf1, and with histones H3/H4. Furthermore, we provide evidence for the involvement of Hif1 in regulation of histone metabolism by showing that cells lacking HIF1 are both sensitive to histone H3 over expression, as well as synthetic lethal with a deletion of histone mRNA regulator LSM1 We also show that a basic patch present at the extreme C-terminus of Hif1 is essential for its proper nuclear localization. Finally, we describe a physical interaction with a transcriptional regulatory protein Spt2, possibly linking Hif1 and the Hat1 complex to transcription-associated chromatin reassembly. Taken together, our results provide novel mechanistic insights into Hif1 functions and establish it as an important protein in chromatin-associated processes.
Project description:Parental histone recycling is essential for the restoration of chromatin-based epigenetic information during chromatin replication; however, the specific mechanisms underlying the local recycling of parental histones remain poorly understood. Here, we reveal an unexpected role of the Spt16-N domain in histone chaperone FACT during parental histone recycling and transfer in budding yeast. We found that depletion of Spt16 or mutations in the Spt16 middle domain leads to defects in both parental histone recycling and new histone deposition, affecting both the leading and lagging strands of DNA replication forks, highlighting the essential role of the FACT complex in both parental histone recycling and new histone deposition. Surprisingly, Spt16-N deletion results in an apparent defect in parental histone recycling, with a more pronounced defect on the lagging strand than the corresponding leading strand. Mechanistically, the Spt16-N domain acts as a protective barrier, shielding FACT-bound histone H3-H4 and facilitating its interaction with Mcm2, which ensures efficient local parental histone recycling. Collectively, the Spt16-N domain provides a protein–protein interaction module allowing FACT to act as a shuttle chaperone, cooperate with multiple replisome components, which act as co-chaperones, to form a complex involving the shuttle chaperone, histones, and co-chaperones, during parental histone recycling and transfer.