Corynebacterium glutamicum as a powerful host for the production of 5-aminovalerate from glucose fermentation
Ontology highlight
ABSTRACT: 5-aminovalerate (5AVA), L-lysine derived compound, represents a potential building block for the production of the bio-plastic nylon-5. Escherichia coli has been engineered for the production of 5AVA, but Corynebacterium glutamicum has never been engineered for the production of 5AVA, but, a lot of work was done in the last decades to optimize the production of the precursor L-lysine and more recently cadaverine. 5AVA added to the growth medium hardly affected growth rate of C. glutamicum, since, a half-inhibitory concentration of 1.1 M 5AVA was determined. While in E. coli, 5AVA production was engineered by using the DavBA pathway from Pseudomonas putida, here a pathway based on the route described in P. aeruginosa was established. C. glutamicum wild type was converted into a 5AVA producing strain by heterologous expression of L-lysine decarboxylase (LdcC), putrescine transaminase (PatA) and γ-aminobutyraldehyde dehydrogenase (PatD) genes from E. coli. 5AVA production was improved by using a strain previously engineered for high L-lysine production, by de-repressing phosphoenolpyruvate phosphotransferase system (PTS) and glycolysis and by avoiding formation of the by-product L-lactate. 5AVA accumulation by this strain was increased to 44.9 mM, representing a yield of 202 mmol mol-1 glucose, which is about three times higher than the highest yield achieved in E. coli for the production of 5AVA from glucose fermentation.
ORGANISM(S): Corynebacterium glutamicum Corynebacterium glutamicum ATCC 13032
PROVIDER: GSE83413 | GEO | 2016/06/17
SECONDARY ACCESSION(S): PRJNA325936
REPOSITORIES: GEO
ACCESS DATA