Project description:DamID with sPom121, Nup98 and control proteins (GFP and Cbx1) N-term tag sPom121, Nup98 or GFP and express in HeLa-C cells - conduct deep sequencing
Project description:We report DNA adenine methyltransferase identification (DamID)-sequencing data to identify Gon4l-associated genomic regions in wild-type (WT) tailbud (TB) stage zebrafish embryos. Methylated, and therefore Gon4l-proximal, gDNA was isolated from embryos expressing a Gon4l-Dam fusion and compared to that from embryos expressing GFP-Dam control.
Project description:Heterochromatin is important for gene regulation and chromosome structure, but the genes that are occupied by heterochromatin proteins in the mammalian genome are largely unknown. We have adapted the DamID method to systematically identify target genes of the heterochromatin proteins HP1 and SUV39H1 in human and mouse cells. Unexpectedly, we found that HP1beta (CBX1) and SUV39H1 bind to genes encoding KRAB domain containing zinc finger (KRAB-ZNF) transcriptional repressors. These genes constitute one of the largest gene families and are organized in clusters in the human genome. Preference of CBX1 for this gene family was observed in both human and mouse cells. High-resolution mapping on human Chromosome 19 revealed that CBX1 coats large domains 0.1 - 4Mb in size, which coincide with the position of KRAB-ZNF gene clusters. These domains show an intricate CBX1 binding pattern: while CBX1 is globally elevated throughout the domains, it is absent from the promoters and binds more strongly to the 3’ ends of KRAB-ZNF genes. KRAB-ZNF domains contain large numbers of LINE elements, which may contribute to CBX1 recruitment. These results uncover a surprising link between heterochromatin and a large family of regulatory genes in mammals. We suggest a role for heterochromatin in the evolution of the KRAB-ZNF gene family. Keywords: DamID, chromatin profiling, DNA microarray, expression profiling.
Project description:To adapt RNA polymerase DamID (RAPID) for FLP-mediated spatial control in Caenorhabditis elegans, we inserted a Dam::rpb-6 fusion gene downstream of a FRT-flanked mCh::his-58 cassette and under control of the hsp-16.41 promoter. We introduced a single copy of this construct into the C. elegans genome and crossed the resulting line with a dpy-7p::FLP driver to enable basal Dam::rpb-6 expression in the hypodermis. Nematodes were cultured at 20 degrees Celcius to ensure low levels of Dam::RPB-6 expression in the hypodermis and total genomic DNA was purified from L4 larvae. DNA from animals expressing GFP::Dam was used to control for unspecific methylation. The genome-wide association profile of Dam::RPB-6 was determined by deep sequencing, which revealed a list of 2331 protein coding genes with FDR < 0.05. Original RAPID reference: Gomez-Saldivar et al (2020) Tissue-Specific Transcription Footprinting Using RNA PoI DamID (RAPID) in Caenorhabditis elegans. Genetics 216, 931–945. doi:10.1534/genetics.120.303774
Project description:We have adapted the DamID protocol for use with high throughput sequencing. We have used DamID to identify the positions within the Drosophila genome where the transcription factor DSX is bound. We sequenced DpnI-digested genomic DNA from fly tissues containing UAS-Dam (control) or UAS-Dam-DsxF or UAS-Dam-DsxM. We have performed DamID-seq on adult male and female fatbody and on ovary. We used two biological replicates for each tissue and sex.
Project description:Analysis of gene expression regulation typically requires identification of genomic sites where regulatory proteins bind. For this purpose, ChIP and DamID methods applied to cell lines or model organisms are now routinely used, even in selected cell types. In this work, we present modifications to experimental DamID protocol, as well as a custom data processing algorithm that allows to confidently identify genomic sites enriched with the proteins of interest. This algorithm is implemented in Perl and is also available as executable files thereby making DamID analysis relatively straightforward. Finally, we demonstrate how this pipeline performs when fed with real experimental data.
Project description:We have adapted the DamID protocol for use with high throughput sequencing. We have used DamID to identify the positions within the Drosophila genome where the transcription factor DSX is bound. We sequenced DpnI-digested genomic DNA from fly tissues containing UAS-Dam (control) or UAS-Dam-DsxF or UAS-Dam-DsxM.
Project description:Dam identification (DamID) is a powerful technique to generate genome-wide maps of chromatin protein binding. Due to its high sensitivity it is particularly suited to study the genome interactions of chromatin proteins in small tissue samples in model organisms such as Drosophila. Here we report an intein-based approach to tune the expression level of Dam and Dam-fusion proteins in Drosophila by addition of a ligand to fly food. This helps to suppress toxic effects of Dam. In addition we describe a strategy for genetically controlled expression of Dam in a specific cell type in complex tissues. We demonstrate the utility of the latter by generating a glia-specific map of Polycomb in small samples of brain tissue. We determined DamID scores for Polycomb, normalized by Dam only control, for Drosophila larval central brain, larval fat bodies and repo+ glial cells of larval central brain. All samples were performed with 2 biological replicates. In case of Dam only control for larval central brain, each biological replicate was performed with 3 technical replicates.
Project description:DamID is a powerful technique for identifying regions of the genome bound by a DNA-binding (or DNA-associated) protein. Currently no method exists for automatically processing next-generation sequencing DamID (DamID-seq) data, and the use of DamID-seq datasets with normalisation based on read-counts alone can lead to high background and the loss of bound signal. DamID-seq thus presents novel challenges in terms of normalisation and background minimisation. We describe here damidseq_pipeline, a software pipeline that performs automatic normalisation and background reduction on multiple DamID-seq FASTQ or BAM datasets. Single replicate profiling of pol II occupancy in 3rd instar larval neuroblasts of Drosophila
Project description:DamID is a powerful technique for identifying regions of the genome bound by a DNA-binding (or DNA-associated) protein. Currently no method exists for automatically processing next-generation sequencing DamID (DamID-seq) data, and the use of DamID-seq datasets with normalisation based on read-counts alone can lead to high background and the loss of bound signal. DamID-seq thus presents novel challenges in terms of normalisation and background minimisation. We describe here damidseq_pipeline, a software pipeline that performs automatic normalisation and background reduction on multiple DamID-seq FASTQ or BAM datasets.