A multi-functional AAV-CRISPR-Cas9 and its host response
Ontology highlight
ABSTRACT: CRISPR-Cas9 delivery by AAV holds promise for gene therapy but faces critical barriers due to its potential immunogenicity and limited payload capacity. Here, we demonstrate genome engineering in postnatal mice using AAV-split-Cas9, a multi-functional platform customizable for genome-editing, transcriptional regulation, and other previously impracticable AAV-CRISPR-Cas9 applications. We identify crucial parameters that impact efficacy and clinical translation of our platform, including viral biodistribution, editing efficiencies in various organs, antigenicity, immunological reactions, and physiological outcomes. These results reveal that AAV-CRISPR-Cas9 evokes host responses with distinct cellular and molecular signatures, but unlike alternative delivery methods, does not induce detectable cellular damage in vivo. Our study provides a foundation for developing effective genome therapeutics
ORGANISM(S): Mus musculus
PROVIDER: GSE84534 | GEO | 2016/07/29
SECONDARY ACCESSION(S): PRJNA329547
REPOSITORIES: GEO
ACCESS DATA