Rice Gene Expression During Biotrophic Invasion by Magnaporthe oryzae (Agilent Array G4138A)
Ontology highlight
ABSTRACT: The hemibiotrophic fungus Magnaporthe oryzae produces specialized biotrophic invasive hyphae (IH) that alter membrane structure and defense responses in invaded rice cells. IH successively invade live neighbor cells, apparently through plasmodesmata. Understanding fungal and rice genes that contribute to biotrophic invasion has been a challenge because so few plant cells have encountered IH at the earliest infection stages. Using a rice sheath inoculation method, we successfully enriched for infected tissue RNA that contained ~20% fungal RNA at a point when most IH were still growing in first-invaded rice cells. The RNAs were analyzed using the whole-genome M. oryzae oligoarray and a rice oligoarray. Rice genes that were induced >50-fold during infection were enriched for genes involved in transferring information from sensors to cellular responses. Fungal genes that were induced >50-fold in IH included the PWL2 avirulence gene and genes encoding hypothetical secreted proteins. The IH-specific secreted proteins are candidate effectors, proteins that the fungus secretes into live host cells to control cellular processes. Gene knock-out analyses of three putative effector genes failed to show major effects on pathogenicity. Details of the blast interaction transcriptome will provide insights on the mechanisms of biotrophic plant disease. Keywords: Disease state analysis
ORGANISM(S): Oryza sativa Oryza sativa Japonica Group Pyricularia oryzae
PROVIDER: GSE8518 | GEO | 2009/04/08
SECONDARY ACCESSION(S): PRJNA105369
REPOSITORIES: GEO
ACCESS DATA