Project description:Galactose promotes pneumococcal biofilms in vivo 15 mRNA profiles of Streptococcus pneumoniae samples that were grown under different conditions were generated using deep sequencing.
Project description:Streptococcus pneumoniae is an opportunistic pathogen that colonizes the nasopharynx. Herein we show that carbon availability is distinct between the nasopharynx and bloodstream of adult humans: glucose is absent from the nasopharynx, whereas galactose is abundant. We demonstrate that pneumococcal neuraminidase A (NanA), which cleaves terminal sialic acid residues from host glycoproteins, exposed galactose on the surface of septal epithelial cells, thereby increasing its availability during colonization. We observed that S. pneumoniae mutants deficient in NanA and ?-galactosidase A (BgaA) failed to form biofilms in vivo despite normal biofilm-forming abilities in vitro Subsequently, we observed that glucose, sucrose, and fructose were inhibitory for biofilm formation, whereas galactose, lactose, and low concentrations of sialic acid were permissive. Together these findings suggested that the genes involved in biofilm formation were under some form of carbon catabolite repression (CCR), a regulatory network in which genes involved in the uptake and metabolism of less-preferred sugars are silenced during growth with preferred sugars. Supporting this notion, we observed that a mutant deficient in pyruvate oxidase, which converts pyruvate to acetyl-phosphate under non-CCR-inducing growth conditions, was unable to form biofilms. Subsequent comparative transcriptome sequencing (RNA-seq) analyses of planktonic and biofilm-grown pneumococci showed that metabolic pathways involving the conversion of pyruvate to acetyl-phosphate and subsequently leading to fatty acid biosynthesis were consistently upregulated during diverse biofilm growth conditions. We conclude that carbon availability in the nasopharynx impacts pneumococcal biofilm formation in vivo Additionally, biofilm formation involves metabolic pathways not previously appreciated to play an important role.
Project description:Streptococcus pneumoniae is opportunistic bacteria cause’s acute otitis media (AOM) in children. It colonizes the nasopharynx in the form of biofilms, and these biofilms act as reservoir, and are vital for pneumococcal infections. The pneumococcal biofilms are regulated by LuxS/AI-2 media quorum sensing. In this study, we confirmed the role of LuxS/AI-2 for in vitro formation of biofilms, assessed the effects of the absence of LuxS/AI-2 signaling, for pneumococcal middle ear infection and identified global genes regulated by LuxS/AI-2 during formation of pneumococcal biofilms. In the cDNA-microarray analysis, 117 genes were differentially expressed in D39 luxS mutant when compared with D39 wild type. Among the 66 genes encoding putative proteins and previously characterized proteins, 60 were significantly down-regulated and 6 were significantly up-regulated. The functional annotation revealed that genes involve in DNA replication and repair, ATP synthesis, capsule biosynthesis, cell division and cell cycle, signal transduction, transcription regulation, competence, virulence, and carbohydrate metabolism were down-regulated in the absence of LuxS/AI-2.
Project description:Transcriptome comparison of the Streptococcus pneumoniae D39 wild-type grown in M17 medium + 0.5 % (w/v) Galactose (GaM17) to grown in M17 medium + 0.5 % (w/v) Glucose (GM17).
Project description:Streptococcus pneumoniae is a Gram positive bacterium that causes severe invasive infection such as pneumonia, septicemia, meningitis and otitis media especially in children, the elderly and immune-compromised patients. Pneumococcal colonization and disease is often associated with biofilm formation. Bacteria in biofilms exhibit elevated resistance both to antibiotics and to host defense systems, which often results in persistent and difficult-to-treat infections. Therefore, the ongoing treat to human health posed by pneumococcal biofilms has prompted extensive research aimed to identify alternative targets and new antimicrobial agents that are effective against bacteria biofilms. The effective anti-biofilm strategies should include inhibition of microbial adhesion to the surface and of colonization, interference with the signal molecules modulating biofilm development and the disaggregation of the biofilm matrix. In this study, we examine the effect of DAM inhibitor small molecule pyrimidine-diones on streptococcus pneumoniae D-39 strain growth (planktonic and biofilm) and evaluate the changes in global gene expression using c-DNA microarray. The microarray analysis was performed on total RNA extracted from biofilms grown in 24-well microtiter plate with 7µm/ml pyrimidine-diones small molecule and control biofilms (biofilms grown without pyrimidine-diones small molecule). To validate the results of microarray, real-time RT-PCR was performed on 12 differentially expressed genes from six different functional groups. cDNA-microarray analysis detected a total of 259 genes that were significantly differentially expressed in biofilm growth with pyrimidine-diones small molecule. 204 genes were significantly down expressed and 55 genes were significantly up expressed in biofilms grown with 7µm/ml pyrimidine-diones small molecule. Among the 204 down expressed genes, 45 were hypothetical protein encoding gene and 159 were functional protein encoding genes. Of 55 up-regulated genes 21 were hypothetical genes and 34 were functional protein encoding genes. The functional annotation showed that gene involve in fatty acid metabolism, cell division, cell cycles, DNA metabolism, cell assembly were significantly down regulated and galactose metabolism related gene were up-expressed in biofilm grown with pyrimidine-diones small molecule.
Project description:Treatment of pneumococcal infections is limited by antibiotic resistance and exacerbation of disease by bacterial lysis releasing pneumolysin toxin and other inflammatory factors. We identified a novel peptide in the Klebsiella pneumoniae secretome, which enters Streptococcus pneumoniae via its AmiA-AliA/AliB permease. Subsequent downregulation of genes for amino acid biosynthesis and peptide uptake was associated with reduction of pneumococcal growth in defined medium and human cerebrospinal fluid, irregular cell shape, decreased chain length and decreased genetic transformation. The bacteriostatic effect was specific to S. pneumoniae and Streptococcus pseudopneumoniae with no effect on Streptococcus mitis, Haemophilus influenzae, Staphylococcus aureus or K. pneumoniae. Peptide sequence and length were crucial to growth suppression. The peptide reduced pneumococcal adherence to primary human airway epithelial cell cultures and colonization of rat nasopharynx, without toxicity. We also analysed the effect of peptide on the proteome of S. pneumoniae. We found alteration of the proteome by the peptide with some proteins turned on or off in line with the transcriptomic changes. We therefore identified a peptide with potential as a therapeutic for pneumococcal diseases suppressing growth of multiple clinical isolates, including antibiotic resistant strains, while avoiding bacterial lysis and dysbiosis.
Project description:We explored the regulatory mechanism of Leloir pathway genes in Streptococcus pneumoniae D39. Here, we demonstrate that the expression of galKT is galactose dependent. By microarray analysis and quantitative RT-PCR, we further show the role of the transcriptional regulator GalR, present upstream of galKT, as a transcriptional activator of galKT in the presence of galactose. Moreover, we predict a 19-bp regulatory site (5'-GATAGTTTAGTAAAATTTT-3' ) for the transcriptional regulator GalR in the promoter region of galK, which is also highly conserved in other streptococci. Growth comparison of Δ galK with the D39 wildtype strain grown in the presence of galactose shows that galK is required for the proper growth of S. pneumoniae on galactose. This SuperSeries is composed of the SubSeries listed below.
Project description:Background. During infection, pneumococci exist mainly in sessile biofilms rather than in planktonic form, except during sepsis. However, relatively little is known about how biofilms contribute to pneumococcal pathogenesis. Methods. We performed a biofilm assay and mouse infection experiments on opaque and transparent variants of a clinical serotype 19F strain. Results. After 4 days incubation, scanning electron microscopy revealed that opaque biofilm bacteria produced an extracellular matrix, whereas the transparent variant did not. The opaque biofilm-derived bacteria translocated from the nasopharynx to the lungs and brain of mice, and showed 100-fold greater in vitro adherence to A549 cells. Microarray analysis of planktonic and sessile bacteria from transparent and opaque variants showed differential gene expression in two operons: the lic operon, involved in choline uptake, and in the two-component system, ciaRH. Mutants of these genes did not form an extracellular matrix, could not translocate from the nasopharynx to the lungs or the brain, and adhered poorly to A549 cells. Conclusions. We conclude that only the opaque phenotype is able to form extracellular matrix, and that the lic operon and ciaRH contribute to this process. We propose that during infection, extracellular matrix formation enhances the ability of pneumococci to cause invasive disease. Data is also available from http://bugs.sgul.ac.uk/E-BUGS-117
Project description:Background: Air-pollutants containing toxic particulate matters (PM) deposit in the respiratory tract and increases microbial infections. However, the mechanism underline is not well understood. In this study, we evaluated the effect of urban particles (UP) on S. pneumoniae in-vitro biofilm formation, colonization on Human middle ear epithelium cells (HMEECs) and in mouse nasal cavity and transition to middle ear and lungs. Methods: S. pneumoniae in vitro biofilms and planktonic growth was evaluated in metal ion free medium in presence of UP, and biofilms were quantified by CV-microplate assay, cfu counts and resazurin staining. Biofilm structures were analyzed using scanning electron microscope (SEM) and confocal microscopy (CM). Gene expressions of biofilms were evaluated using real time RT-PCR. Effects of UP exposure on S. pneumoniae colonization to HMEECs was evaluated using fluorescent in-situ hybridization (FISH), cell viability was detected by EZcyto kit, apoptosis in HMEECs were evaluated using Annexin-V/PI based cytometry analysis and reactive oxygen species (ROS) production were evaluated using Oxiselect kit. Alteration of HMEECs gene expressions on UP exposure or pneumococci colonization were evaluated using microarray. In vivo colonization of pneumococci in presence of UP and transition to middle ear and lungs were evaluated using intranasal mice colonization model. Results: UP exposure significantly (*p< 0.05) increased pneumococcal in vitro biofilms and planktonic growth. In presence of UP pneumococci formed organized biofilms with matrix, while in absence of UP bacteria was unable to form biofilms. The luxS, ply, lytA, comA, comB and ciaR genes involved in bacterial pathogenesis, biofilms formation and quorum sensing were up-regulated in pneumococci biofilms grown in presence of UP. The HMEECs viability was significantly (p<0.05) decreased and bacteria colonization was significantly (p<0.05) elevated in co-treatment (UP+S. pneumoniae) in compare to single treatment. Similarly, increased apoptosis and ROS produce were detected in HMEECs treated with UP+ pneumococci. The microarray analysis of HMEECs revealed that the genes involve in apoptosis and cell death, inflammation, immune response were up-regulated in co-treatment, those genes were unchanged or expressed in less fold in single treatments of UP or S. pneumoniae. In vivo study showed increased pneumococcal colonization to nasal cavity in presence of UP and higher transition of bacteria to middle ear and lungs in presence of UP.