XBP1 confers estrogen independence and antiestrogen resistance in breast cancer cell lines
Ontology highlight
ABSTRACT: Human X-box binding protein-1 (XBP1) is an alternatively spliced transcription factor that participates in the unfolded protein response (UPR), a stress signaling pathway that allows cells to survive the accumulation of unfolded proteins in the endoplasmic reticulum lumen. We have previously demonstrated that XBP1 expression is increased in antiestrogen-resistant breast cancer cell lines, and is co-expressed with estrogen receptor alpha (ER) in breast tumors. The purpose of this study is to investigate the role of XBP1 and the UPR in estrogen and antiestrogen responsiveness in breast cancer. Overexpression of spliced XBP1 (XBP1(S)) in ER-positive breast cancer cells leads to estrogen-independent growth and reduced sensitivity to growth inhibition induced by the antiestrogens Tamoxifen and Faslodex in a manner independent of functional p53. Data from gene expression microarray analyses imply that XBP1(S) acts through regulating the expression of ER, the anti-apoptotic gene BCL2, and several other genes associated with control of the cell cycle and apoptosis. Keywords: genetic modification (effect of gene knock-in, stable transfection)
ORGANISM(S): Homo sapiens
PROVIDER: GSE8562 | GEO | 2007/08/13
SECONDARY ACCESSION(S): PRJNA101703
REPOSITORIES: GEO
ACCESS DATA