A distinct gene module uncouples dysfunction from activation in tumor-infiltrating T cells (batch 2)
Ontology highlight
ABSTRACT: Reversing the dysfunctional T cell state that arises in cancer and chronic viral infections is the focus of therapeutic interventions; however, current therapies are effective in only some patients and some tumor types. To gain a deeper molecular understanding of the dysfunctional T cell state, we analyzed population and single-cell RNA profiles of CD8+ tumor-infiltrating lymphocytes (TILs) and used genetic perturbations to identify a distinct gene module for T cell dysfunction that can be uncoupled from T cell activation. This distinct dysfunction module is downstream of intracellular metallothioneins that regulate zinc metabolism and can be identified at single-cell resolution. We further identify Gata-3, a zinc-finger transcription factor in the dysfunctional module, as a regulator of dysfunction, and use CRISPR/Cas9 genome editing to show that it drives a dysfunctional phenotype in CD8+ TILs. Our results open novel avenues for targeting dysfunctional T cell states, while leaving activation programs intact.
ORGANISM(S): Mus musculus
PROVIDER: GSE86039 | GEO | 2016/09/07
SECONDARY ACCESSION(S): PRJNA340084
REPOSITORIES: GEO
ACCESS DATA