Project description:Diverse chromatin modifiers are involved in regulation of gene expression at the level of transcriptional regulation. Among these modifiers are ATP-dependent chromatin remodelers, where the SWI/SNF complex is the founding member. It has been observed that High Mobility Group (HMG) proteins can influence the activity of a number of these chromatin remodelers. In this context, we have previously demonstrated that the yeast HMG proteins Nhp6 and Hmo1 can stimulate SWI/SNF activity. Here, we studied the genome-wide binding patterns of Nhp6, Hmo1 and the SWI/SNF complex, finding that most of gene promoters presenting high occupancy of this complex also display high enrichment of these HMG proteins. Using deletion mutant strains we demonstrate that binding of SWI/SNF is significantly reduced at numerous genomic locations by deletion of NHP6 and/or deletion of HMO1. Moreover, alterations in the nucleosome landscape take place at gene promoters undergoing reduced SWI/SNF binding. Additional analyses show that these effects also correlate with alterations in transcriptional activity. Our results suggest that, besides the ability to stimulate SWI/SNF activity, these HMG proteins are able to assist the loading of this complex onto gene regulatory regions.
Project description:Precise nucleosome-positioning patterns at promoters are thought to be crucial for faithful transcriptional regulation. However, the mechanisms by which these patterns are established, are dynamically maintained, and subsequently contribute to transcriptional control are poorly understood. The switch/sucrose non-fermentable chromatin remodeling complex, also known as the Brg1 associated factors complex, is a master developmental regulator and tumor suppressor capable of mobilizing nucleosomes in biochemical assays. However, its role in establishing the nucleosome landscape in vivo is unclear. Here we have inactivated Snf5 and Brg1, core subunits of the mammalian Swi/Snf complex, to evaluate their effects on chromatin structure and transcription levels genomewide. We find that inactivation of either subunit leads to disruptions of specific nucleosome patterning combined with a loss of overall nucleosome occupancy at a large number of promoters, regardless of their association with CpG islands. These rearrangements are accompanied by gene expression changes that promote cell proliferation. Collectively, these findings define a direct relationship between chromatin-remodeling complexes, chromatin structure, and transcriptional regulation.
Project description:Argonaute (AGO) proteins have a well-established role in post-transcriptional regulation of gene expression as key component of the RNA silencing pathways. Recent evidence involves AGO proteins in mammalian nuclear processes such as transcription and splicing, though the mechanistic aspects of AGO nuclear functions remain largely elusive. Here, by SILAC-based interaction proteomics, we identify the chromatin-remodelling complex SWI/SNF as a novel AGO2 interactor in human cells. Moreover, we show that nuclear AGO2 is loaded with a novel class of Dicer-dependent short RNAs (sRNAs), that we called swiRNAs, which map nearby the Transcription Start Sites (TSSs) bound by SWI/SNF. The knock-down of AGO2 decreases nucleosome occupancy at the first nucleosome located downstream of TSSs in a swiRNA-dependent manner. Our findings indicate that in human cells AGO2 binds SWI/SNF and a novel class of sRNAs to establish nucleosome occupancy on target TSSs.
Project description:ATP-dependent chromatin remodeling complexes play a critical role in chromatin dynamics. A large number of in vitro studies have pointed towards nucleosome sliding as the principal remodeling outcome of SWI/SNF action, whereas few have described histone octamer transfer as the principal outcome. In contrast, recent in vivo studies have linked the activity of SWI/SNF to histone eviction in trans from gene promoters. In this study, we have found that the chimeric transcription factor Gal4-VP16 can enhance SWI/SNF histone octamer transfer activity, resulting in targeted histone eviction from a nucleosome probe. This effect is dependent on the presence of the activation domain. We observed that under conditions mimicking the in vivo relative abundance of SWI/SNF with respect to the total number of nucleosomes in a cell nucleus, the accessibility of the transcription factor binding site is the first determinant in the sequence of events leading to nucleosome remodeling. We propose a model mechanism for this transcription factor-mediated enhancement of SWI/SNF octamer transfer activity.
Project description:Every known SWI/SNF chromatin-remodeling complex incorporates an ARID DNA binding domain-containing subunit. Despite being a ubiquitous component of the complex, physiological roles for this domain remain undefined. Here, we show that disruption of ARID1a-DNA binding in mice results in embryonic lethality, with mutant embryos manifesting prominent defects in the heart and extraembryonic vasculature. The DNA binding-defective mutant ARID1a subunit is stably expressed and capable of assembling into a SWI/SNF complex with core catalytic properties, but nucleosome substrate binding and promoter occupancy by ARID1a-containing SWI/SNF complexes (BAF-A) are impaired. Depletion of ARID domain-dependent, BAF-A associations at THROMBOSPONDIN 1 (THBS1) led to the concomitant upregulation of this SWI/SNF target gene. Using a THBS1 promoter-reporter gene, we further show that BAF-A directly regulates THBS1 promoter activity in an ARID domain-dependent manner. Our data not only demonstrate that ARID1a-DNA interactions are physiologically relevant in higher eukaryotes but also indicate that these interactions facilitate SWI/SNF binding to target sites in vivo. These findings support the model wherein cooperative interactions among intrinsic subunit-chromatin interaction domains and sequence-specific transcription factors drive SWI/SNF recruitment.
Project description:The chromatin-remodelling complex SWI/SNF is highly conserved and has critical roles in various cellular processes, including transcription and DNA-damage repair1,2. It hydrolyses ATP to remodel chromatin structure by sliding and evicting histone octamers3-8, creating DNA regions that become accessible to other essential factors. However, our mechanistic understanding of the remodelling activity is hindered by the lack of a high-resolution structure of complexes from this family. Here we report the cryo-electron microscopy structure of Saccharomyces cerevisiae SWI/SNF bound to a nucleosome, at near-atomic resolution. In the structure, the actin-related protein (Arp) module is sandwiched between the ATPase and the rest of the complex, with the Snf2 helicase-SANT associated (HSA) domain connecting all modules. The body contains an assembly scaffold composed of conserved subunits Snf12 (also known as SMARCD or BAF60), Snf5 (also known as SMARCB1, BAF47 or INI1) and an asymmetric dimer of Swi3 (also known as SMARCC, BAF155 or BAF170). Another conserved subunit, Swi1 (also known as ARID1 or BAF250), resides in the core of SWI/SNF, acting as a molecular hub. We also observed interactions between Snf5 and the histones at the acidic patch, which could serve as an anchor during active DNA translocation. Our structure enables us to map and rationalize a subset of cancer-related mutations in the human SWI/SNF complex and to propose a model for how SWI/SNF recognizes and remodels the +1 nucleosome to generate nucleosome-depleted regions during gene activation9.
Project description:The switch defective/sucrose non-fermentable (SWI/SNF) multisubunit complex plays an important role in the regulation of gene expression by remodeling chromatin structure. Three SWI/SNF complexes have been identified in Arabidopsis including BAS, SAS, and MAS. Many subunits of these complexes are involved in controlling plant development and stress response. However, the function of these complexes has hardly been studied in other plant species. In this study, we identified the subunits of the SWI/SNF complex in sorghum and analyzed their evolutionary relationships in six grass species. The grass species conserved all the subunits as in Arabidopsis, but gene duplication occurred diversely in different species. Expression pattern analysis in sorghum (Sorghum bicolor) showed that most of the subunit-encoding genes were expressed constitutively, although the expression level was different. Transactivation assays revealed that SbAN3, SbGIF3, and SbSWI3B possessed transactivation activity, which suggests that they may interact with the pre-initiation complex (PIC) to activate transcription. We chose 12 subunits in sorghum to investigate their interaction relationship by yeast two-hybrid assay. We found that these subunits displayed distinct interaction patterns compared to their homologs in Arabidopsis and rice. This suggests that different SWI/SNF complexes may be formed in sorghum to perform chromatin remodeling functions. Through the integrated analysis of MNase-seq and RNA-seq data, we uncovered a positive relationship between gene expression levels and nucleosome phasing. Furthermore, we found differential global nucleosome enrichments between leaves and roots, as well as in response to PEG treatment, suggesting that dynamics of nucleosome occupancy, which is probably mediated by the SWI/SNF complex, may play important roles in sorghum development and stress response.