Project description:Expression profiling of 3T3-F442A adipocytes treated with growth hormone (GH, 500 nM) or vehicle (DMEM + 1% BSA) control for 30 min., 4 hr., or 48 hr in three independent experiments. Chronic GH treatment induces metabolic changes consistent with insulin resistance in 3T3-F442A adipocytes. Keywords: time-course
Project description:Expression profiling of 3T3-F442A adipocytes treated with growth hormone (GH, 500 nM) or vehicle (DMEM + 1% BSA) control for 30 min., 4 hr., or 48 hr in three independent experiments. Chronic GH treatment induces metabolic changes consistent with insulin resistance in 3T3-F442A adipocytes.
Project description:Murine 3T3-L1 progenitor adipocytes cell cultures, treated and untreated (Control) with resveratrol before the induction of differentiation and the effects on adipogenesis and insulin signaling was investigated. Keywords: Treatment response
Project description:Comparing gene expression profile in 3T3-F442A adipocytes with shRNA against TRPV4 or GFP. TRPV4 is an ion channel expressed in adipocytes. Results provided information that how loss-of-function of TRPV4 affects gene expression in adipocytes.
Project description:Murine 3T3-L1 progenitor adipocytes cell cultures, treated and untreated (Control) with resveratrol before the induction of differentiation and the effects on adipogenesis and insulin signaling was investigated. Keywords: Treatment response 3 Replicates of treated and untreated (Control) cell cultures
Project description:Transcriptional profiling of mouse 3T3-L1 adipocytes. The objective of this study is to explore gene expression profiles of 3T3-L1 adipocytes in response to GDE5 siRNA transfection.
Project description:Comparing gene expression profile in 3T3-F442A adipocytes with shRNA against TRPV4 or GFP. TRPV4 is an ion channel expressed in adipocytes. Results provided information that how loss-of-function of TRPV4 affects gene expression in adipocytes. 4 samples were analyzed as two groups: shGFP (control) and shTRPV4 (experimental). Each group has two replicates.