Igf1r deficiency attenuates acute inflammatory response and oxidative stress following bleomycin-induced lung injury
Ontology highlight
ABSTRACT: IGF1R (Insulin-like Growth Factor 1 Receptor) is a ubiquitously expressed transmembrane tyrosine kinase receptor with multiple functions including inflammation. IGF activity maintains human lung homeostasis, being involved in relevant pulmonary diseases with an inflammatory component, such as lung cancer, COPD, asthma and pulmonary fibrosis. Here we examined the role of IGF1R in lung inflammation using mice with a postnatal deficiency of Igf1r and a model of bleomycin(BLM)-induced lung injury. Lung transcriptome analysis of Igf1r-deficient mice showed a general inhibition of transcription of genes related to epigenetics, inflammation/immune response and oxidative stress activity with potential pulmonary protective roles. Early upon intratracheal BLM treatment, mutant mice showed improved survival and milder pulmonary injury and inflammation. Their lungs presented down-regulation of macrophage (Marco/Adgre1), neutrophil-related (Cxcl1/Ly6g), pro-inflammatory (Tnf/Il1b/Il6), endothelial adhesion (Icam1/Pecam1) and alveolar damage (Aqp5/Sftpc) markers and up-regulation of resolution phase markers (Csf1/Il13/Cd209a). Changes in mRNA of IGF system genes were also found, in parallel to a hindered response to hypoxia (Hif1a) and increased expression of the anti-oxidative stress marker Gpx8. These findings identify Igf1r as an important player in oxidative stress and inflammation and suggest that targeting Igf1r may block the inflammatory response in lung diseases with this component.
ORGANISM(S): Mus musculus
PROVIDER: GSE88908 | GEO | 2017/07/29
SECONDARY ACCESSION(S): PRJNA349061
REPOSITORIES: GEO
ACCESS DATA