Comparative transcriptome profiling of transgenic Arabidopsis thaliana lines expressing the Hyaloperonospora arabidopsidis candidate effector HaRxL106 and knock-out mutants of HaRxL106-interacting host proteins
Ontology highlight
ABSTRACT: To prevent activation of plant innate immunity the oomycete pathogen Hyaloperonospora arabidopsidis translocates effector proteins into infected cells of its host Arabidopsis thaliana. We noticed that some H. arabidopsidis effectors, when over-expressed in A. thaliana, render the plant more susceptible to infection by biotrophic pathogens (Fabro et al., 2011, PubMed PMID: 22072967). Here we performed transcriptome profiling of a representative transgenic line constitutively expressing H. arabidopsidis effector HaRxL106. We compared the transcriptomes of A. thaliana wild-type (Col-0) plants and an isogenic line expressing HaRxL106 before pathogen challenge and 24 h after infection with the compatible bacterial pathogen Pseudomonas syringae pv. tomato strain DC3000. HaRxL106 interacts with several Arabidopsis proteins (Mukhtar et al., 2011, PubMed PMID: 21798943; Wirthmueller et al., 2015, PubMed PMID: 25284001). To test whether the HaRxL106-interacting A. thaliana proteins MODIFIER OF SNC1, 6 (MOS6), 6B-INTERACTING PROTEIN 1-LIKE 1 (ASIL1) or RADICAL-INDUCED CELL DEATH1 (RCD1) are altered in their transcriptional response to a biotrophic pathogen we performed transcriptome profiling of mos6-1, asil1-1 and rcd1-1 mutants before and 24 h after infection with P. syringae pv. tomato DC3000.
Project description:The Arabidopsis Pathoarray 464_001 (GPL3638) was used to compare response of Col-0, pad4-1 (Zhou et al., 1998; Jirage et al., 1999) and sid2-2 (Wildermuth et al., 2001) to Pseudomonas syringae pv. tomato DC3000 hrcC mutant. SA production is drastically reduced in sid2 mutants. PAD4 is required for SA-mediated responses. The results suggested that the SA increase triggered by MAMPs is one major component in the MAMPs-triggered signaling mechanism. Keywords: Responses of Arabidopsis to Pseudomonas syringae pv. tomato DC3000 hrcC mutant
Project description:This study investigates extent and functional significance of alternative splicing in Arabidopsis thaliana defense against the bacterial pathogen Pseudomonas syringae pv tomato (Pst). We have provided a detailed characterization of the Arabidopsis thaliana transcriptional response to Pseudomonas syringae infection in both susceptible and resistant hosts. We carried out two independent inoculation experiments (biological replicates) for each treatment. Col-0 is susceptible to virulent Pst DC3000 but has a functional RPS4 resistance gene effective against DC3000 expressing AvrRps4
Project description:High-resolution temporal transcriptomic analysis of Arabidopsis thaliana leaves during infection by Pseudomonas syringae DC3000 and DC3000hrpA-thaliana
Project description:We used Arabidopsis full-genome microarrays to characterize plant transcript accumulations in wild-type plants and clv mutants, 3 days after water treatment and inoculation with the biotrophic oomycete downy mildew pathogen, Hyaloperonospora arabidopsidis.
Project description:We used Arabidopsis full-genome microarrays to characterize plant transcript accumulations in map65-3 and ugt76b1 mutants, 3 days after water treatment and inoculation with the biotrophic oomycete downy mildew pathogen, Hyaloperonospora arabidopsidis (Hpa)
Project description:We used Arabidopsis full-genome microarrays to characterize plant transcript accumulations at different stages of infection with the biotrophic oomycete downy mildew pathogen, Hyaloperonospora arabidopsidis : initiation (< 1 dpi) and maintenance of infection (> 4 dpi).
Project description:We used Arabidopsis full-genome microarrays to characterize plant transcript accumulations in wild-type plants and pskr1-5 mutants, 3 days after water treatment and inoculation with the biotrophic oomycete downy mildew pathogen, Hyaloperonospora arabidopsidis.
Project description:This study evaluates the transcriptome of four genotypes of Arabidopsis thaliana infected at the seedling stage with the Pseudomonas syringae strain DC3000 cor-.
Project description:This study evaluates the transcriptome of Arabidopsis thaliana infected with the Pseudomonas syringae strain DC3000 cor- carrying the type three secretion system effector HopBB1
Project description:We show that the catalytic a subunits KIN10 and KIN11 of the Arabidopsis thaliana SnRK1 complex interact with the STOREKEEPER RELATED 1/G-element Binding Protein (STKR1) inside the plant cell nucleus. Overexpression of STKR1 in transgenic Arabidopsis plants led to reduced growth, a delay in flowering and strongly attenuated senescence. At the global transcriptome level, genes affected by STKR1 overexpression were broadly associated with systemic acquired resistance and transgenic plants showed enhanced resistance towards a virulent strain of the biotrophic oomycete pathogen Hyaloperonospora arabidopsidis Noco2.