Genome-wide analyses of human perisylvian cerebral cortical patterning
Ontology highlight
ABSTRACT: Despite the well-established role of the frontal and posterior peri-sylvian cortices in many facets of human-cognitive specializations, including language, little is known about the developmental patterning of these regions in human brain. We performed a genome-wide analysis of human cerebral patterning during mid-gestation, a critical epoch in cortical regionalization. A total of 345 genes were identified as differentially expressed (DE) between superior temporal gyrus (STG) and the remaining cerebral cortex (CTX). GO categories representing transcription factors were enriched in STG, while cell-adhesion and extracellular matrix molecules, were enriched in the other cortical regions. Q-PCR or in situ hybridization were performed to validate differential expression in a subset of 32 genes, most of which were confirmed. LIM domain binding 1 (LDB1), which we show to be enriched in the STG, is a recently identified interactor of LIM domain only 4 (LMO4), a gene known to be involved in the asymmetric pattering of the peri-sylvian region in the developing human brain. Protocadherin 17 (PCDH17), a neuronal cell adhesion molecule, was highly enriched in focal regions of the human prefrontal cortex. Contactin Associated Protein-Like 2 (CNTNAP2), in which mutations are known to cause autism, epilepsy and language delay, showed a remarkable pattern of anterior enriched expression in cortical regions important for human higher cognition. Importantly, a similar pattern was not observed in the mouse or rat. These data highlight the importance of expression analysis of human brain and the utility of cross-species comparisons of gene expression. Genes identified here provide a foundation for understanding molecular aspects of human-cognitive specializations and disorders that disrupt them. Keywords: Regional contrast
ORGANISM(S): Homo sapiens
PROVIDER: GSE9335 | GEO | 2007/10/31
SECONDARY ACCESSION(S): PRJNA103015
REPOSITORIES: GEO
ACCESS DATA