The skeletal muscle transcript profile reflects responses to inadequate protein intake in younger and older males
Ontology highlight
ABSTRACT: Inadequate protein intake initiates an accommodative response with adverse changes in skeletal muscle function and structure. mRNA level changes due to short-term inadequate dietary protein might be an early indicator of accommodation. The aims of this study were to assess the effects of dietary protein and the diet-by-age interaction on the skeletal muscle transcript profile. Self-organizing maps were used to determine expression patterns across protein trials. 958 transcripts were differentially expressed (P<0.05) with diet and 853 had a diet-by-age interaction (P<0.05) using ANOVA. The results for diet alone revealed that P63 was associated with up-regulation of transcripts related to ubiquitin-dependent protein catabolism and muscle contraction and P63 and P94 resulted in up-regulation of transcripts related to apoptosis and down-regulation of transcripts related to cell differentiation; muscle and organ development; extracellular space; and responses to stimuli and stress. The diet-by-age expression patterns demonstrated that across the three protein trials transcripts related to protein metabolism were affected by age. Changes in skeletal muscle mRNA levels in the younger and older males to protein intake near or below the RDA are indicative of an early accommodative response. 5052 transcripts were determined as differentially expressed (P<0.05) between the younger and older males, of which 2556 met the False Discovery Rate correction (P=0.0081). The age-related changes in the transcript profile were consistent with aging skeletal muscle phenotypes including; mitochondrial dysfunction (UP- and DOWN-regulation), RNA splicing (UP), oxidative stress (UP), apoptosis (UP), and energy metabolism (DOWN). Keywords: Age and dietary protein response
ORGANISM(S): Homo sapiens
PROVIDER: GSE9419 | GEO | 2008/09/22
SECONDARY ACCESSION(S): PRJNA103159
REPOSITORIES: GEO
ACCESS DATA