Project description:Aberrant gene expression is a hallmark of acute leukemias. MYB-driven transcriptional coactivation with CREB-binding protein (CBP)/P300 is required for acute lymphoblastic and myeloid leukemias, including refractory MLL-rearranged leukemias. Using structure-guided molecular design, we developed a peptidomimetic inhibitor MYBMIM that interferes with the assembly of the molecular MYB:CBP/P300 complex and rapidly accumulates in the nuclei of AML cells. Treatment of AML cells with MYBMIM led to the dissociation of the MYB:CBP/P300 complex in cells, its displacement from oncogenic enhancers enriched for MYB binding sites, and downregulation of MYB-dependent gene expression, including of MYC and BCL2 oncogenes. AML cells underwent mitochondrial apoptosis in response to MYBMIM, which was partially rescued by ectopic expression of BCL2. MYBMIM impeded leukemia growth and extended survival of immunodeficient mice engrafted with primary patient-derived MLL-rearranged leukemia cells. These findings elucidate the dependence of human AML on aberrant transcriptional coactivation, and establish a pharmacologic approach for its therapeutic blockade.
Project description:Aberrant gene expression is a hallmark of acute leukemias. However, therapeutic strategies for its blockade are generally lacking, in large part due to the pharmacologic challenges of drugging transcription factors. MYB-driven gene trans-activation with CREB-binding protein (CBP) is required for the initiation and maintenance of a variety of acute lymphoblastic and myeloid leukemias, including refractory MLL-rearranged leukemias. Using structure-guided molecular design, we developed a prototypical peptidomimetic inhibitor MYBMIM that interferes with the assembly of the molecular MYB:CBP complex at ¼M concentrations and rapidly accumulates in the nuclei of AML cells. We found that treatment of AML cells with MYBMIM, but not with its inactive near-isosteric analogue TG3, led to the displacement and dissociation of MYB:CBP complex in cells, displacement of MYB from oncogenic enhancers and promoters enriched for MYB binding sites, and rapid downregulation of MYB-dependent gene expression, including of MYC and BCL2 oncogenes. Both human MLL-rearranged and non-rearranged AML cells, but not normal CD34+ umbilical cord blood progenitor cells, underwent sustained mitochondrial apoptosis in response to MYBMIM treatment, an effect that could be partially rescued by ectopic expression of BCL2. We observed that MYBMIM treatment impeded leukemia growth and extended survival of immunodeficient mice engrafted with primary patient-derived MLL-rearranged leukemia cells. These findings emphasize the exquisite dependence of human AML on MYB:CBP transcriptional dysregulation, and establish a pharmacologic approach for its therapeutic blockade.
Project description:Aberrant gene expression is a hallmark of acute leukemias. However, therapeutic strategies for its blockade are generally lacking, in large part due to the pharmacologic challenges of drugging transcription factors. MYB-driven gene trans-activation with CREB-binding protein (CBP) is required for the initiation and maintenance of a variety of acute lymphoblastic and myeloid leukemias, including refractory MLL-rearranged leukemias. Using structure-guided molecular design, we developed a prototypical peptidomimetic inhibitor MYBMIM that interferes with the assembly of the molecular MYB:CBP complex at ¼M concentrations and rapidly accumulates in the nuclei of AML cells. We found that treatment of AML cells with MYBMIM, but not with its inactive near-isosteric analogue TG3, led to the displacement and dissociation of MYB:CBP complex in cells, displacement of MYB from oncogenic enhancers and promoters enriched for MYB binding sites, and rapid downregulation of MYB-dependent gene expression, including of MYC and BCL2 oncogenes. Both human MLL-rearranged and non-rearranged AML cells, but not normal CD34+ umbilical cord blood progenitor cells, underwent sustained mitochondrial apoptosis in response to MYBMIM treatment, an effect that could be partially rescued by ectopic expression of BCL2. We observed that MYBMIM treatment impeded leukemia growth and extended survival of immunodeficient mice engrafted with primary patient-derived MLL-rearranged leukemia cells. These findings emphasize the exquisite dependence of human AML on MYB:CBP transcriptional dysregulation, and establish a pharmacologic approach for its therapeutic blockade.
Project description:Aberrant gene expression is a hallmark of acute leukemias. However, therapeutic strategies for its blockade are generally lacking, in large part due to the pharmacologic challenges of drugging transcription factors. MYB-driven gene trans-activation with CREB-binding protein (CBP) is required for the initiation and maintenance of a variety of acute lymphoblastic and myeloid leukemias, including refractory MLL-rearranged leukemias. Using structure-guided molecular design, we developed a prototypical peptidomimetic inhibitor MYBMIM that interferes with the assembly of the molecular MYB:CBP complex at ¼M concentrations and rapidly accumulates in the nuclei of AML cells. We found that treatment of AML cells with MYBMIM, but not with its inactive near-isosteric analogue TG3, led to the displacement and dissociation of MYB:CBP complex in cells, displacement of MYB from oncogenic enhancers and promoters enriched for MYB binding sites, and rapid downregulation of MYB-dependent gene expression, including of MYC and BCL2 oncogenes. Both human MLL-rearranged and non-rearranged AML cells, but not normal CD34+ umbilical cord blood progenitor cells, underwent sustained mitochondrial apoptosis in response to MYBMIM treatment, an effect that could be partially rescued by ectopic expression of BCL2. We observed that MYBMIM treatment impeded leukemia growth and extended survival of immunodeficient mice engrafted with primary patient-derived MLL-rearranged leukemia cells. These findings emphasize the exquisite dependence of human AML on MYB:CBP transcriptional dysregulation, and establish a pharmacologic approach for its therapeutic blockade.