Project description:Detailed transcriptomic analyses of differentiated cell populations derived from human pluripotent stem cells is routinely used to assess the identity and utility of the differentiated cells. In particular, single cell RNA-sequencing (scRNA-seq) can provide insights into both the cellular and transcriptional heterogeneity of differentiated cell populations. Here we provide scRNA-seq data obtained from ROR1-expressing lens epithelial cells (ROR1e LECs) obtained via directed differentiation of CA1 human embryonic stem cells. Through the use of principal component analysis, heat maps and gene ontology assessments, we demonstrate that ROR1e LECs represent a highly purified and large-scale population of lens cells. These data provide a resource for future characterisation of both normal and cataractous human lens biology.
Project description:Lung epithelial lineages have been difficult to maintain in pure form in vitro, and lineage-specific reporters have proven invaluable for monitoring their emergence from cultured pluripotent stem cells (PSCs). However, reporter constructs for tracking proximal airway lineages generated from PSCs have not been previously available, limiting the characterization of these cells. Here, we engineer mouse and human PSC lines carrying airway secretory lineage reporters that facilitate the tracking, purification, and profiling of this lung subtype. Through bulk and single-cell-based global transcriptomic profiling, we find PSC-derived airway secretory cells are susceptible to phenotypic plasticity exemplified by the tendency to co-express both a proximal airway secretory program as well as an alveolar type 2 cell program, which can be minimized by inhibiting endogenous Wnt signaling. Our results provide global profiles of engineered lung cell fates, a guide for improving their directed differentiation, and a human model of the developing airway.
Project description:Adenocarcinoma is the most common histologic subtype of lung cancer, which is the leading cause of cancer death. We and others previously identified TTF-1, a lineage-specific transcription factor required for branching morphogenesis and physiological lung functions, as a lineage-survival oncogene in lung adenocarcinoma. However, how TTF-1 mediates survival signals remains elusive. Here we show that TTF-1 induces receptor tyrosine kinase-like orphan receptor 1 (ROR1), which in turn mediates TTF-1 survival signaling in lung adenocarcinoma. Inhibition of ROR1 impaired prosurvival signaling through the PI3K-AKT pathway and induced nuclear accumulation of FOXO1. These were found to be imposed, at least in part, through PTEN inactivation via c-Src, while ROR1 was shown to physically interact with and phosphorylate c-Src. ROR1 inhibition also elicited marked p38 activation, provoking ill-balance between prosurvival and proapoptotic signaling, and consequential “oncogenic shock.” In addition, we found that ROR1 is crucially involved in EGFR- and MET-mediated prosurvival signaling. ROR1 knockdown effectively induced apoptosis in lung adenocarcinoma cell lines with acquired EGFR TKI resistance conferred by a secondary T790M EGFR mutation, or HGF-elicited MET signaling and resultant switching of the addicted receptor tyrosine kinases (RTKs). Taken together, our findings indicate that ROR1 RTK is a very promising molecular target for development of a novel therapeutic means to treat this hard-to-cure cancer. Dye-swap experiment, vector control vs. stable TTF-1 transfectant of HPL1D, immortalized human peripheral lung epithelial cell line.
Project description:Human pluripotent stem cell (hPSC)-derived progenies are immature versions of cells, presenting a potential limitation to the accurate modelling of diseases associated with maturity or age. Hence, it is important to characterise how closely cells used in culture resemble their native counterparts. In order to select appropriate time points of retinal pigment epithelium (RPE) cultures that reflect native counterparts, we characterised the transcriptomic profiles of the hPSC-derived RPE cells from 1- and 12-month cultures. We differentiated the human embryonic stem cell line H9 into RPE cells, performed single-cell RNA-sequencing of a total of 16,576 cells to assess the molecular changes of the RPE cells across these two culture time points. Our results indicate the stability of the RPE transcriptomic signature, with no evidence of an epithelial-mesenchymal transition, and with the maturing populations of the RPE observed with time in culture. Assessment of Gene Ontology pathways revealed that as the cultures age, RPE cells upregulate expression of genes involved in metal binding and antioxidant functions. This might reflect an increased ability to handle oxidative stress as cells mature. Comparison with native human RPE data confirms a maturing transcriptional profile of RPE cells in culture. These results suggest that long-term in vitro culture of RPE cells allows the modelling of specific phenotypes observed in native mature tissues. Our work highlights the transcriptional landscape of hPSC-derived RPE cells as they age in culture, which provides a reference for native and patient samples to be benchmarked against.
Project description:We applied high-throughput sequence to identify signaling pathways, stem cell gene signature or target genes of BMI1 that were affected by our newly development humainzed anti-ROR1 antibody (cirmtuzumab) in breast cancer patient-derived xenograft (PDX) mice model
Project description:Receptor-tyrosine-kinase-like orphan receptor 1 (ROR1) is expressed during embryogenesis and by certain leukemias, but not by tissues of healthy adults. Here we show that the neoplastic cells of many human breast cancers express the ROR1 protein and high-level expression of ROR1 in breast adenocarcinoma was associated with aggressive disease.
Project description:Human induced pluripotent stem cells (hiPSCs) have become an invaluable tool for studying molecular disease mechanisms on a human genetic background. They can be differentiated into different cell types, including cardiac myocytes. Here, we studied the remodeling of mitochondrial protein complexes of hiPSCs cultured under hypoxic versus normoxic conditions.
Project description:We previously reported that ROR1 is a crucial downstream gene for the TTF-1/NKX2-1 lineage-survival oncogene in lung adenocarcinoma, while others have found altered expression of ROR1 in multiple cancer types. Accumulated evidence therefore indicates ROR1 as an attractive molecular target, though it has yet to be determined whether targeting Ror1 can inhibit tumor development and growth in vivo. To this end, genetically engineered mice carrying homozygously floxed Ror1 alleles and an SP-C promoter-driven human mutant EGFR transgene were generated. Ror1 ablation resulted in marked retardation of tumor development and progression in association with reduced malignant characteristics and significantly better survival. Interestingly, gene set enrichment analysis identified a hypoxia-induced gene set (HALLMARK_HYPOXIA) as most significantly downregulated by Ror1 ablation in vivo, which led to findings showing that ROR1 knockdown diminished HIF-1α expression under normoxia and clearly hampered HIF-1α induction in response to hypoxia in human lung adenocarcinoma cell lines. The present results directly demonstrate the importance of Ror1 for in vivo development and progression of lung adenocarcinoma, and also identify Ror1 as a novel regulator of Hif-1α. Thus, a future study aimed at the development of a novel therapeutic targeting ROR1 for treatment of solid tumors such as seen in lung cancer, which are frequently accompanied with a hypoxic tumor microenvironment, is warranted.