SRNA-seq data over Arabidopsis thaliana germination
Ontology highlight
ABSTRACT: sRNA-seq profiling of 10 time points during germination in Arabidopsis, from freshly harvested seed, through mature seed, stratification, germination and to post-germination.
Project description:RNAseq profiling of 10 time points during germination in Arabidopsis, from freshly harvested seed, through mature seed, stratification, germination and to post-germination.
Project description:methylC-seq profiling of 4 time points during germination in Arabidopsis, from mature seed, through stratification, germination and to post-germination.
Project description:In depth temporal profiling of transcript changes at 10 time points during germination in Arabidopsis seed was carried out. The time course utilised, encompassed seed maturation, stratification, germination and post-germination and provided a global investigation into the tightly regulated, phasic changes that define seed germination. A previously unidentified transient expression pattern was identified for a group of genes, whereby a significant rise in abundance was observed at the end of stratification and significantly lower expression observed up to 6 hours later. Total RNA extraction was carried out on 80 mg of Arabidopsis seeds at 10 time points during germination in triplicate. The time points selected were: freshly harvested seed (H), seeds following 15 days of ripening (0 h), seeds after; 1 h of stratification (1 h S), 12 h of stratification (12 h S), 48 h of stratification (48 h S), followed by seed collected 1 hour into the light (1 h SL), 6 hours into the light (6 h SL), 12 hours into the light (12 h SL), 24 hours into the light (24 h SL) and 48 hours into the light (48 h SL).
Project description:To establish the basis for understanding molecular mechanism of seed germination response to temperature, we analyzed transcriptomes in freshly harvested dormant and dry stored after-ripened seeds. The after-ripened seeds started to show visible germination from 36h after the start of imbibition, and almost all the seeds germinated after 3 days. The freshly harvested seeds stayed dormant by imbibition at 26°C, and germination of the after-ripened seeds was almost completely inhibited at 34°C. Total RNA was prepared from 0 (dry), 6 and 24h imbibed seeds to find regulatory genes of seed dormancy and germination.
Project description:Seed maturation, dormancy and germination are distinct physiological processes. Transition from maturation to dormancy, and from dormancy into germination are not only critical developmental phases in the plant life cycle but are also important agricultural traits. These developmental processes and their phase transitions are fine determined and coordinately regulated by genetic makeup and environmental cues. SCARECROW-LIKE15 (SCL15) has been demonstrated to be essential for repressing the seed maturation programme in vegetative tissues (Gao et al., Nat Commun, 2015, 6:7243). Here we report that SCL15 is also important for seed dormancy maintenance, germination timing and seed vigor performance based on the effects of SCL15 mutation on plant germination, growth and reproduction when compared with wild type Arabidopsis and over-expression lines 35S:SCL15 and Napin:SCL15. Seed dormancy is enhanced by the mutation of SCL15 in a GA signaling dependent way, indicating that SCL15 plays a negative role for primary dormancy release. Seed germination is positively regulated by SCL15 through interaction with ABA, GA and auxin signaling. SCL15 acts as positive regulator of seed vigor and effect of SCL15 mRNA abundance on seed reserve accumulation and seed development during late embryogenesis may contribute to the seed vigor performance.
Project description:affy_rice_2011_03 - affy_compartimentation_rice_albumen_embryon - During germination, the rice seed goes from a dry quiescent state to an active metabolism. As with all cereals, the rice seed is highly differentiated between the embryo (that will give rise to the future plantlet) and the endosperm (that contains the seed storage compounds and that will degenerate). The molecular mechanisms operating in the rice seed embryo have begun to be described. Yet, very few studies have focused specifically on the endosperm during the germination process. In particular, the endosperm is mostly addressed with regards to its storage proteins but we have detected a large protein diversity by two-dimensional electrophoresis. Similarly, the endosperm is rich in total RNA which suggest that gene expression coming from seed maturation could play a role during the germination process. In this context, we want to compare the transcriptome of the embryo and the endosperm during rice seed germination. -We germinate rice seeds of the first sequenced rice cultivar i.e. Nipponbare during 0, 4, 8, 12, 16 and 24h of imbibition in sterile distilled water. Germination occurs under constant air bubbling, in the dark at 30°C. These rice seeds are then manually dissected into embryo and endosperm fractions. -The embryo-derived samples are abbreviated in “E” while the endosperm samples are abbreviated “A”. The germination time-point is indicated after the letter (e.g. E8 for embryo samples harvested after 8 hours of germination). Finally, the biological repetition number is indicated before the letter and the time digit (e.g. 1-E8 for an embryo sample from the first repetition at 8 hours of imbibition).
Project description:In addition to the evolutionarily-conserved Ca2+ sensor, calmodulin (CaM), plants possess a large family of CaM-related proteins (CMLs). Using a cml39 loss-of-function mutant, we investigated the roles of CML39 in Arabidopsis and discovered a range of phenotypes across developmental stages and in different tissues. In mature plants, loss of CML39 results in shorter siliques, reduced seed number per silique, and reduced number of ovules per pistil. We also observed changes in seed development, germination, and seed coat properties in cml39 mutants in comparison to wild-type plants. Using radicle emergence as a measure of germination, cml39 mutants showed more rapid germination than wild-type plants. In marked contrast to wild-type seeds, the germination of developing, immature cml39 seeds was not sensitive to cold-stratification. In addition, germination of cml39 seeds was less sensitive than wild-type to inhibition by ABA or by treatments that impaired gibberellic acid biosynthesis. Tetrazolium red staining indicated that the seed-coat permeability of cml39 seeds is greater than that of wild-type seeds. RNA sequencing analysis of cml39 seedlings suggests that changes in chromatin modification may underlie some of the phenotypes associated with cml39 mutants, consistent with previous reports that orthologs of CML39 participate in gene silencing. Aberrant ectopic expression of transcripts for seed storage proteins in 7-day old cml39 seedlings was observed, suggesting mis-regulation of early developmental programs. Collectively, our data support a model where CML39 serves as an important Ca2+ sensor during ovule and seed development, as well as during germination and seedling establishment.
Project description:In depth temporal profiling of transcript changes at 10 time points during germination in Arabidopsis seed was carried out. The time course utilised, encompassed seed maturation, stratification, germination and post-germination and provided a global investigation into the tightly regulated, phasic changes that define seed germination. A previously unidentified transient expression pattern was identified for a group of genes, whereby a significant rise in abundance was observed at the end of stratification and significantly lower expression observed up to 6 hours later.
Project description:Wheat seed germination is highly related to seedling survival rate and subsequent vegetative growth,and therefore directly affects the conformation of wheat yield and quality. So wheat seed germination is not only important to itself, but the whole human society. However, due to the large genome size, many studies related to wheat seed are very complex and uncompleted. Transcriptome analysis of elite Chinese bread wheat cultivar Jimai 20 may provides a comprehensive understanding of wheat seed germination. Seed germination involves in the regulation of large number of genes, whether these genes are normal activated or not is very important to seed germination. We performed microarray analysis using the Affymetrix Gene Chip to reveal the gene expression profiles in five phases of wheat cultivar Jimai 20 seed germination. Our results provide a new insights into the thoroughly metabolic changes of seed germination as well as the relationship between some significant genes.