Project description:methylC-seq profiling of 4 time points during germination in Arabidopsis, from mature seed, through stratification, germination and to post-germination.
Project description:sRNA-seq profiling of 10 time points during germination in Arabidopsis, from freshly harvested seed, through mature seed, stratification, germination and to post-germination.
Project description:RNAseq profiling of 10 time points during germination in Arabidopsis, from freshly harvested seed, through mature seed, stratification, germination and to post-germination.
Project description:In order to identify specific plant anti-viral genes related to the miRNA regulatory pathway, RNA-Seq and sRNA-Seq were performed using Arabidopsis WT and dcl1-9 mutant line. A total of 5,204 DEGs were identified in TCV-infected WT plants. In contrast, only 595 DEGs were obtained in the infected dcl1-9 mutant plants. GO enrichment analysis of the shared DEGs and dcl1-9 unique DEGs showed that a wide range of biological processes were affected in the infected WT plants. In addition, miRNAs displayed different patterns between mock and infected WT plants. This is the first global view of dcl1-9 transcriptome which provides TCV responsive miRNAs data. In conclusion, our results indicated the significance of DCL1 and suggested that PPR genes may play an important role in plant anti-viral defense.
Project description:Nitrate and other nitrogen metabolites can act as signals that regulate global gene expression in plants. Adaptive changes in plant morphology and physiology triggered by changes in nitrate availability are partly explained by these changes in gene expression. Despite several genome-wide efforts to identify nitrate-regulated genes, no comprehensive study of the Arabidopsis root transcriptome under contrasting nitrate conditions has been carried out.In this work, we employed the Illumina high throughput sequencing technology to perform an integrated analysis of the poly-A + enriched and the small RNA fractions of the Arabidopsis thaliana root transcriptome in response to nitrate treatments. Our sequencing strategy identified new nitrate-regulated genes including 40 genes not represented in the ATH1 Affymetrix GeneChip, a novel nitrate-responsive antisense transcript and a new nitrate responsive miRNA/TARGET module consisting of a novel microRNA, miR5640 and its target, AtPPC3.Sequencing of small RNAs and mRNAs uncovered new genes, and enabled us to develop new hypotheses for nitrate regulation and coordination of carbon and nitrogen metabolism.
Project description:BACKGROUND:DNA methylation is an epigenetic modification that is studied at a single-base resolution with bisulfite treatment followed by high-throughput sequencing. After alignment of the sequence reads to a reference genome, methylation counts are analyzed to determine genomic regions that are differentially methylated between two or more biological conditions. Even though a variety of software packages is available for different aspects of the bioinformatics analysis, they often produce results that are biased or require excessive computational requirements. RESULTS:DMRfinder is a novel computational pipeline that identifies differentially methylated regions efficiently. Following alignment, DMRfinder extracts methylation counts and performs a modified single-linkage clustering of methylation sites into genomic regions. It then compares methylation levels using beta-binomial hierarchical modeling and Wald tests. Among its innovative attributes are the analyses of novel methylation sites and methylation linkage, as well as the simultaneous statistical analysis of multiple sample groups. To demonstrate its efficiency, DMRfinder is benchmarked against other computational approaches using a large published dataset. Contrasting two replicates of the same sample yielded minimal genomic regions with DMRfinder, whereas two alternative software packages reported a substantial number of false positives. Further analyses of biological samples revealed fundamental differences between DMRfinder and another software package, despite the fact that they utilize the same underlying statistical basis. For each step, DMRfinder completed the analysis in a fraction of the time required by other software. CONCLUSIONS:Among the computational approaches for identifying differentially methylated regions from high-throughput bisulfite sequencing datasets, DMRfinder is the first that integrates all the post-alignment steps in a single package. Compared to other software, DMRfinder is extremely efficient and unbiased in this process. DMRfinder is free and open-source software, available on GitHub ( github.com/jsh58/DMRfinder ); it is written in Python and R, and is supported on Linux.
Project description:The life cycle of flowering plants ends and begins with seeds. Unlike animals, plants can pause their life cycle as dormant seeds during this transition. DNA methylation is involved in the regulation of gene expression and genome integrity. Reprogramming erases and re-establishes DNA methylation during development in animals. Knowledge of reprogramming or reconfiguration in plants has been limited to pollen and the central cell. To better understand epigenetic reconfiguration in the embryo, which forms the plant body, we compared dry and germinating seed time-series methylomes to publicly available seed development methylomes. Time-series whole genome bisulfite sequencing (WGBS) revealed extensive gain of CHH methylation during seed development and drastic loss of CHH methylation during germination. These dynamic changes in methylation mainly occur within transposable elements. Active DNA methylation during embryogenesis depends on both RNA-directed DNA methylation and heterochromatin formation pathways whereas global demethylation during germination occurs in a passive manner. However, an active DNA demethylation pathway is initiated during late embryogenesis, which contributes to the endosperm specific methylation patterns.This study provides new insights into dynamic DNA methylation reprogramming events during seed development and germination and suggests possible mechanisms of regulation. The observed sequential methylation/demethylation cycle suggests an important role of DNA methylation in seed dormancy.
Project description:To characterize and dissect genetic variation for salinity tolerance, we assessed variation in salinity tolerance during germination and seedling growth for a worldwide sample of Arabidopsis thaliana accessions. By combining QTL mapping, association mapping and expression data, we identified genomic regions involved in salinity response. Among the worldwide sample, we found germination ability within a moderately saline environment (150 mM NaCl) varied considerable, from >90% among the most tolerant lines to complete inability to germinate among the most susceptible. Our results also demonstrated wide variation in salinity tolerance within A. thaliana RIL populations and identified multiple genomic regions that contribute to this variation. These regions contain known candidate genes, but at least four of the regions contain loci not yet associated with salinity tolerance response phenotypes. Our observations suggest A. thaliana natural variation may be an underutilized resource for investigating salinity stress response.
Project description:BackgroundSeed germination involves progression from complete metabolic dormancy to a highly active, growing seedling. Many factors regulate germination and these interact extensively, forming a complex network of inputs that control the seed-to-seedling transition. Our understanding of the direct regulation of gene expression and the dynamic changes in the epigenome and small RNAs during germination is limited. The interactions between genome, transcriptome and epigenome must be revealed in order to identify the regulatory mechanisms that control seed germination.ResultsWe present an integrated analysis of high-resolution RNA sequencing, small RNA sequencing and MethylC sequencing over ten developmental time points in Arabidopsis thaliana seeds, finding extensive transcriptomic and epigenomic transformations associated with seed germination. We identify previously unannotated loci from which messenger RNAs are expressed transiently during germination and find widespread alternative splicing and divergent isoform abundance of genes involved in RNA processing and splicing. We generate the first dynamic transcription factor network model of germination, identifying known and novel regulatory factors. Expression of both microRNA and short interfering RNA loci changes significantly during germination, particularly between the seed and the post-germinative seedling. These are associated with changes in gene expression and large-scale demethylation observed towards the end of germination, as the epigenome transitions from an embryo-like to a vegetative seedling state.ConclusionsThis study reveals the complex dynamics and interactions of the transcriptome and epigenome during seed germination, including the extensive remodelling of the seed DNA methylome from an embryo-like to vegetative-like state during the seed-to-seedling transition. Data are available for exploration in a user-friendly browser at https://jbrowse.latrobe.edu.au/germination_epigenome .