Project description:Macrophage-mediated programmed cell removal (PrCR) is a process essential for the clearance of unwanted (damaged, dysfunctional, aged, or harmful) cells. The detection and recognition of appropriate target cells by macrophages is a critical step for successful PrCR, but its molecular mechanisms have not been delineated. Here using the models of tissue turnover, cancer immunosurveillance, and hematopoietic stem cells, we show that unwanted cells such as aging neutrophils and living cancer cells are susceptible to "labeling" by secreted calreticulin (CRT) from macrophages, enabling their clearance through PrCR. Importantly, we identified asialoglycans on the target cells to which CRT binds to regulate PrCR, and the availability of such CRT-binding sites on cancer cells correlated with the prognosis of patients in various malignancies. Our study reveals a general mechanism of target cell recognition by macrophages, which is the key for the removal of unwanted cells by PrCR in physiological and pathophysiological processes.
Project description:Loss of the p53-inducible LINC01021 in p53-proficient CRC cell lines results in increased sensitivity to DNA-damaging chemotherapeutics. Here, we comprehensively analyzed how LINC01021 affects the p53-induced transcriptional program. Using a CRISPR/Cas9-approach we deleted the p53 binding site in the LINC01021 promoter of SW480 colorectal cancer cells and subjected them to RNA-Seq analysis after activation of ectopic p53. RNA affinity purification followed by mass spectrometry was used identify proteins associated with LINC01021.
Project description:Calreticulin is an abundant intracellular protein which is involved in a number of cellular functions. During cytomegalovirus infection, as well as inflammatory episodes in autoimmune disease, calreticulin can be released from cells and detected in the circulation, where it may act as an immunodominant autoantigen in diseases such as systemic lupus erythematosus. Calreticulin is known to bind to the molecules of innate immunity, such as C1q, the first subcomponent of complement. However, the functional implications of C1q-calreticulin interactions are unknown. In the present study we sought to investigate, in greater detail, the interaction between these two proteins following the release of calreticulin from neutrophils upon stimulation. In order to pinpoint the regions of interaction, recombinant calreticulin and its discrete domains (N-, P- and C-domains) were produced in Escherichia coli. Both the N- and P-domains of calreticulin were shown to bind to the globular head regions of C1q. Calreticulin also appeared to alter C1q-mediated immune functions. Binding of calreticulin to C1q inhibited haemolysis of IgM-sensitized erythrocytes. Both the N- and P-domains of calreticulin were found to contain sites involved in the inhibition of C1q-induced haemolysis. Full-length calreticulin, and its N- and P-domains, were also able to reduce the C1q-dependent binding of immune complexes to neutrophils. We conclude that calreticulin, once released from neutrophils during inflammation, may not only induce an antigenic reaction, but, under defined conditions, may also interfere with C1q-mediated inflammatory processes.
Project description:BackgroundIdentifying novel tumor biomarkers to develop more effective diagnostic and therapeutic strategies for patients with ACC is urgently needed. The aim of the study was to compare the proteomic profiles between adrenocortical carcinomas (ACC) and normal adrenocortical tissues in order to identify novel potential biomarkers for ACC.MethodsThe protein samples from 12 ACC tissues and their paired adjacent normal adrenocortical tissues were profiled with two-dimensional electrophoresis; and differentially expressed proteins were identified by mass spectrometry. Expression patterns of three differently expressed proteins calreticulin, prohibitin and HSP60 in ACC, adrenocortical adenomas (ACA) and normal adrenocortical tissues were further validated by immunohistochemistry.ResultsIn our proteomic study, we identified 20 up-regulated and 9 down-regulated proteins in ACC tissues compared with paired normal controls. Most of the up-regulated proteins were focused in protein binding and oxidoreductase activity in Gene Ontology (GO) molecular function classification. By immunohistochemistry, two biomarkers calreticulin and prohibitin were validated to be overexpressed in ACC compared with adrenocortical adenomas (ACA) and normal tissues, but also calreticulin overexpression was significantly associated with tumor stages of ACC.ConclusionFor the first time, calreticulin and prohibitin were identified to be novel candidate biomarkers for ACC, and their roles during ACC carcinogenesis and clinical significance deserves further investigation.Virtual slidesThe virtual slides for this article can be found here: http://www.diagnosticpathology.diagnomx.eu/vs/1897372598927465.
Project description:The first GSSM of V. vinifera was reconstructed (MODEL2408120001). Tissue-specific models for stem, leaf, and berry of the Cabernet Sauvignon cultivar were generated from the original model, through the integration of RNA-Seq data. These models have been merged into diel multi-tissue models to study the interactions between tissues at light and dark phases.