Project description:Cardiac fibrosis is the final common pathology in heart disease. Here we establish an integrated imaging-genomic discovery platform using primary human heart fibroblasts to identify new drug targets for cardiac fibrosis. Genome wide analyses identify IL11, a secreted cytokine amenable to therapeutic inhibition, as the leading pro-fibrotic candidate. We demonstrate an autocrine loop of IL11 activity that is critical for fibrosis and acts as a nexus of signalling convergence for multiple pro-fibrotic stimuli. IL11 signals in cis and trans via the ERK cascade to activate a programme of fibrosis primarily at the level of protein translation. Injection of IL11 to mice causes fibrosis of the heart, kidney, lung, skin and liver whereas genetic ablation of the IL11 receptor prevented fibrosis across tissues. These data define a new non-canonical fibrogenic pathway and prioritise IL11 as a novel therapeutic target for fibrosis of the heart and other organs
Project description:Cardiac fibrosis is the final common pathology in heart disease. Here we establish an integrated imaging-genomic discovery platform using primary human heart fibroblasts to identify new drug targets for cardiac fibrosis. Genome wide analyses identify IL11, a secreted cytokine amenable to therapeutic inhibition, as the leading pro-fibrotic candidate. We demonstrate an autocrine loop of IL11 activity that is critical for fibrosis and acts as a nexus of signalling convergence for multiple pro-fibrotic stimuli. IL11 signals in cis and trans via the ERK cascade to activate a programme of fibrosis primarily at the level of protein translation. Injection of IL11 to mice causes fibrosis of the heart, kidney, lung, skin and liver whereas genetic ablation of the IL11 receptor prevented fibrosis across tissues. These data define a new non-canonical fibrogenic pathway and prioritise IL11 as a novel therapeutic target for fibrosis of the heart and other organs
Project description:Cardiac fibrosis is the final common pathology in heart disease. Here we establish an integrated imaging-genomic discovery platform using primary human heart fibroblasts to identify new drug targets for cardiac fibrosis. Genome wide analyses identify IL11, a secreted cytokine amenable to therapeutic inhibition, as the leading pro-fibrotic candidate. We demonstrate an autocrine loop of IL11 activity that is critical for fibrosis and acts as a nexus of signalling convergence for multiple pro-fibrotic stimuli. IL11 signals in cis and trans via the ERK cascade to activate a programme of fibrosis primarily at the level of protein translation. Injection of IL11 to mice causes fibrosis of the heart, kidney, lung, skin and liver whereas genetic ablation of the IL11 receptor prevented fibrosis across tissues. These data define a new non-canonical fibrogenic pathway and prioritise IL11 as a novel therapeutic target for fibrosis of the heart and other organs
Project description:Pancreatic ductal adenocarcinoma (PDAC) is a devastating disease with an overall 5-year survival rate of <12% due to the lack of effective treatments. Novel treatment strategies are urgently needed. Here, PKMYT1 is identified through genome-wide CRISPR screens as a non-mutant, genetic vulnerability of PDAC. Higher PKMYT1 expression levels indicate poor prognosis in PDAC patients. PKMYT1 ablation inhibits tumor growth and proliferation in vitro and in vivo by regulating cell cycle progression and inducing apoptosis. Moreover, pharmacological inhibition of PKMYT1 shows efficacy in multiple PDAC cell models and effectively induces tumor regression without overt toxicity in PDAC cell line-derived xenograft and in more clinically relevant patient-derived xenograft models. Mechanistically, in addition to its canonical functions of phosphorylating CDK1, PKMYT1 functions as an oncogene to promote PDAC tumorigenesis by regulating PLK1 expression and phosphorylation. Finally, TP53 function and PRKDC activation are shown to modulate the sensitivity to PKMYT1 inhibition. These results define PKMYT1 dependency in PDAC and identify potential therapeutic strategies for clinical translation.
Project description:The development of high-throughput gene manipulating tools such as short hairpin RNA (shRNA) and CRISPR/Cas9 libraries has enabled robust characterization of novel functional genes contributing to the pathological states of the diseases. In acute myeloid leukemia (AML), these genetic screen approaches have been used to identify effector genes with previously unknown roles in AML. These AML-related genes centralize alongside the cellular pathways mediating epigenetics, signaling transduction, transcriptional regulation, and energy metabolism. The shRNA/CRISPR genetic screens also realized an array of candidate genes amenable to pharmaceutical targeting. This review aims to summarize genes, mechanisms, and potential therapeutic strategies found via high-throughput genetic screens in AML. We also discuss the potential of these findings to instruct novel AML therapies for combating drug resistance in this genetically heterogeneous disease.
Project description:Notch1 is a rational therapeutic target in several human cancers, but as a transcriptional regulator, it poses a drug discovery challenge. To identify Notch1 modulators, we performed two cell-based, high-throughput screens for small-molecule inhibitors and cDNA enhancers of a NOTCH1 allele bearing a leukemia-associated mutation. Sarco/endoplasmic reticulum calcium ATPase (SERCA) channels emerged at the intersection of these complementary screens. SERCA inhibition preferentially impairs the maturation and activity of mutated Notch1 receptors and induces a G0/G1 arrest in NOTCH1-mutated human leukemia cells. A small-molecule SERCA inhibitor has on-target activity in two mouse models of human leukemia and interferes with Notch signaling in Drosophila. These studies "credential" SERCA as a therapeutic target in cancers associated with NOTCH1 mutations.
Project description:Medulloblastoma (MB) is the most prevalent malignant brain tumor in children, accounting for 20% of all childhood brain tumors. The molecular profiling of MB into 4 major subgroups (WNT, SHH, Grp3, and Grp4) emphasizes the heterogeneity of MB and opens paths in which treatments may be targeted to molecularly aggressive and distinct tumors. Current therapeutic strategies for Group 3 MB are challenging and can be accompanied by long-term side effects from treatment. The involvement of altered epigenetic machinery in neoplastic transformation in MB has become more evident. Thus, we performed an epigenomic RNAi and chemical screen and identified SETD8/PRE-SET7/KMT5a as a critical player in maintaining proliferation and cell survival of MB cells. We have found that inhibition of SETD8 effects the migration/invasive ability of MB cells. SETD8 alters H4K20me chromatin occupancy at key genes involved in tumor invasiveness and pluripotency. Interestingly, these results link the aggressive and metastatic behavior of MYC-driven MB with SETD8 activity. Based on our results, we suggest that SETD8 has a critical role mediating Group 3 MB tumorigenesis. Establishing a role for SETD8 as a factor in MYC-driven MB has potential to lead to more effective therapies needed to improve outcomes in high-risk patients.
Project description:Cancer stem cells (CSCs) are responsible for tumor progression, recurrence, and drug resistance. To identify genetic vulnerabilities of colon cancer, we performed targeted CRISPR dropout screens comprising 657 Drugbank targets and 317 epigenetic regulators on two patient-derived colon CSC-enriched spheroids. Next-generation sequencing of pooled genomic DNAs isolated from surviving cells yielded therapeutic candidates. We unraveled 44 essential genes for colon CSC-enriched spheroids propagation, including key cholesterol biosynthetic genes (HMGCR, FDPS, and GGPS1). Cholesterol biosynthesis was induced in colon cancer tissues, especially CSC-enriched spheroids. The genetic and pharmacological inhibition of HMGCR/FDPS impaired self-renewal capacity and tumorigenic potential of the spheroid models in vitro and in vivo. Mechanistically, HMGCR or FDPS depletion impaired cancer stemness characteristics by activating TGF-β signaling, which in turn downregulated expression of inhibitors of differentiation (ID) proteins, key regulators of cancer stemness. Cholesterol and geranylgeranyl diphosphate (GGPP) rescued the growth inhibitory and signaling effect of HMGCR/FDPS blockade, implying a direct role of these metabolites in modulating stemness. Finally, cholesterol biosynthesis inhibitors and 5-FU demonstrated antitumor synergy in colon CSC-enriched spheroids, tumor organoids, and xenografts. Taken together, our study unravels novel genetic vulnerabilities of colon CSC-enriched spheroids and suggests cholesterol biosynthesis as a potential target in conjunction with traditional chemotherapy for colon cancer treatment.
Project description:Liver fibrosis is characterized by the persistent deposition of extracellular matrix components by hepatic stellate cell (HSC)-derived myofibroblasts. It is the histological manifestation of progressive, but reversible wound-healing processes. An unabated fibrotic response results in chronic liver disease and cirrhosis, a pathological precursor of hepatocellular carcinoma. We report here that JQ1, a small molecule inhibitor of bromodomain-containing protein 4 (BRD4), a member of bromodomain and extraterminal (BET) proteins, abrogate cytokine-induced activation of HSCs. Cistromic analyses reveal that BRD4 is highly enriched at enhancers associated with genes involved in multiple profibrotic pathways, where BRD4 is colocalized with profibrotic transcription factors. Furthermore, we show that JQ1 is not only protective, but can reverse the fibrotic response in carbon tetrachloride-induced fibrosis in mouse models. Our results implicate that BRD4 can act as a global genomic regulator to direct the fibrotic response through its coordinated regulation of myofibroblast transcription. This suggests BRD4 as a potential therapeutic target for patients with fibrotic complications.