Chromatin module inference on cellular trajectories identifies key transition points and poised epigenetic states in diverse developmental processes
Ontology highlight
ABSTRACT: During cell fate transitions the chromatin organization of the precursor cell changes from that of the endpoint cell. Current computational approaches to analyze chromatin modifications across multiple cell types do not model how the cell types are related on a lineage or over time. To overcome this limitation, we have developed a method called CMINT (Chromatin Module INference on Trees), a probabilistic clustering approach to systematically capture chromatin state dynamics across multiple cell types. Using the output from CMINT we gained novel insights into chromatin state dynamics of reprogramming to induced pluripotent stem cells (iPSCs.) We found that chromatin changes could occur without large gene expression changes; different combinations of activating marks were associated with specific reprogramming factors; in partially reprogrammed cells there was an order of acquisition of chromatin marks at pluripotency loci; and multivalent states, comprising previously undetermined combinations of activating and repressive histone modifications, were enriched for an architectural protein.
Project description:Regulation of chromatin states involves the dynamic interplay between different histone modifications to control gene expression. Recent advances have enabled mapping of histone marks in single cells, but most methods are constrained to profile only one histone mark per cell. Here we present an integrated experimental and computational framework, scChIX-seq (single-cell chromatin immunocleavage and unmixing), to map multiple histone marks in single cells. scChIX-seq multiplexes two histone marks together in single cells, then computationally deconvolves the signal using training data from respective histone mark profiles. This framework learns the cell type-specific correlation structure between histone marks, and therefore does not require a priori assumptions of their genomic distributions. Using scChIX-seq, we demonstrate multimodal analysis of histone marks in single cells across a range of mark combinations: two repressive marks, two active marks, and an active plus a repressive mark. In mouse gastrulation, we find that cell type-specific regulation in active chromatin can be accompanied by stable heterochromatin landscapes that are shared across cell types. Applying scChIX-seq to two active marks during macrophage differentiation, we find H3K4me1 dynamics preceding H3K36me3. Modeling these dynamics enables integrated analysis of chromatin velocity during differentiation. Overall, scChIX-seq unlocks systematic interrogation of the interplay between histone modifications in single cells.
Project description:Histone modifications play an important role in chromatin organization and transcriptional regulation. Specific combinations of these modifications to the histone tails have been associated with different functional genomic elements: for example, promoters, enhancers and insulators. Despite the enormous amount of genome-wide histone modification data collected in different cells and tissues, little is known about co-occurrence of modifications on the same nucleosome. Here we present a novel, genome-wide quantitative method for combinatorial indexed chromatin immunoprecipitation (Co-ChIP) to characterize the co-occurrence of histone modifications. Using Co-ChIP, we characterize the genome-wide co-occurrence of 15 chromatin marks (70 pairwise combinations), and find unexpected dynamics between the different marks, including co-occurrence of H3K9me1-H3K27ac in super-enhancers. Finally, we apply Co-ChIP to characterize the distribution of the bivalent H3K4me3-H3K27me3 domain in distinct mouse embryonic stem cell (mESC) states as well as in four adult tissues. We observe dynamic changes in 5786 regions and discover both loss and de novo gain of bivalency in key tissue-specific regulatory genes, suggesting a crucial role for bivalent domains following development. Taken together, we demonstrate that Co-ChIP enables routine single molecule characterization of histone mark co-occurrence and probes the previously hidden dynamic interactions of histone modifications.
Project description:Chromatin profiling has emerged as a powerful means for annotating genomic elements and detecting regulatory activity. Here we generate and analyze a compendium of epigenomic maps for nine chromatin marks across nine cell types, in order to systematically characterize cis-regulatory elements, their cell type-specificities, and their functional interactions. We first identify recurrent combinations of histone modifications and use them to annotate diverse regulatory elements including promoters, enhancers, transcripts and insulators in each cell type. We next characterize the dynamics of these elements, revealing meaningful patterns of activity for promoter states and exquisite cell type-selectivity for enhancer states. We define multi-cell activity profiles that reflect the patterns of enhancer state activity across cell types, as well as analogous profiles for gene expression, regulatory motif enrichments, and expression of the corresponding regulators. We use correlations between these profiles to link enhancers to putative target genes, to infer cell type-specific activators and repressors, and to predict and validate functional regulator binding motifs in specific chromatin states. These functional annotations and regulatory predictions enable us to revisit intergenic single-nucleotide polymorphisms (SNPs) associated with human disease in genome-wide association studies (GWAS). We find that for several diseases, top-scoring SNPs are precisely positioned within enhancer elements specifically active in relevant cell types. In several cases a disease variant affects a motif instance for one of the predicted causal regulators, thus providing a potential mechanistic explanation for the disease association. Our study presents a general framework for applying multi-cell chromatin state analysis to decipher cis-regulatory connections and their role in health and disease. 9 human cell types were cultured in duplicate and subject to Affymetrix profiling
Project description:The spatial and temporal control of Hox gene transcription is essential for patterning the vertebrate body axis. Although this process involves changes in histone posttranslational modifications, the existence of particular three-dimensional (3D) architectures remained to be assessed in vivo. Using high-resolution chromatin conformation capture methodology, we examined the spatial configuration of Hox clusters in embryonic mouse tissues where different Hox genes are active. When the cluster is transcriptionally inactive, Hox genes associate into a single 3D structure delimited from flanking regions. Once transcription starts, Hox clusters switch to a bimodal 3D organization where newly activated genes progressively cluster into a transcriptionally active compartment. This transition in spatial configurations coincides with the dynamics of chromatin marks, which label the progression of the gene clusters from a negative to a positive transcription status. This spatial compartmentalization may be key to process the collinear activation of these compact gene clusters. Examination of gene expression in 3 cell types. Examination of 2 different histone modifications in 2 cell types.
Project description:Post-translational histone modifications modulate chromatin packing to regulate gene expression. How chromatin states, both at euchromatic and at heterochromatic regions, underlie cell fate decisions in single cells is relatively unexplored. We develop sort assisted single-cell chromatin immunocleavage (sortChIC) and apply it to map active (H3K4me1 and H3K4me3) and repressive (H3K27me3 and H3K9me3) histone modifications in hematopoietic stem and progenitor cells (HSPCs), and mature blood cells in the mouse bone marrow. During differentiation, HSPCs acquire distinct active chromatin states that depend on the specific cell fate, mediated by cell type-specifying transcription factors. By contrast, most regions that gain or lose repressive marks during differentiation do so independent of the specific cell fate. Joint profiling of active H3K4me1 and repressive H3K9me3 in single cells demonstrates that cell types within the myeloid lineage have distinct active chromatin regulation but share a similar myeloid-specific heterochromatin-repressed state. Our results suggest a hierarchical chromatin regulation program during hematopoiesis, by which heterochromatin dynamics define differentiation trajectories and lineages, while euchromatin dynamics establish cell types within lineages.
Project description:Human embryonic stem cells share identical genomic sequences with other lineage-committed cells yet possess the remarkable properties of self-renewal and pluripotency. It has been proposed that epigenetic regulatory mechanisms, involving DNA methylation and various chromatin modifications, are at least partly responsible for the distinct cellular properties between different cell types. Previous studies focusing largely on gene promoters and CpG islands have identified close association between several chromatin modifications and DNA methylation, but revealed a relatively small degree of differences between pluripotent and lineage-committed cells. Here, we examine the association between 11 chromatin modifications and DNA methylation at high resolution throughout the genome in the human embryonic stem cells and primary fetal lung fibroblasts. We observe a new set of relationships between chromatin modifications and DNA methylation occurring outside of the promoter regions. We also find that epigenomic landscapes are drastically different between the ES cells and fibroblasts. In particular, over 40% of the human genome differs in their chromatin structure between the two cell types. Most of the changes come from a dramatic redistribution of the repressive H3K9me3 and H3K27me3 marks, which form large blocks that expand significantly in the fibroblasts relative to ES cells. Additionally, we identified numerous small and punctuated regions outside of promoters that are associated with many active chromatin modification marks, and show that chromatin dynamics at these potential regulatory sequences are associated with change in DNA methylation between the ES cells and fibroblasts. Our results provide new insights into epigenetic regulatory mechanisms underlying properties of pluripotency and cell fate commitment. ChIP-Seq Analysis of OCT4, KLF4, MYC, TAFII and P300 in hESC H1 cells. 36 cycles of sequencing was done on the Illumina Genome Analyzer or Analyzer II platforms.
Project description:We develop a new ChIpseq method (iChIP) to profile chromatin states of low cell number samples. We use IChIP to profile the chromatin dynamics during hematopoiesis across 16 different cell types which include the principal hematopoietic progenitors Examination of 2 different histone modifications in 2 cell types.
Project description:We develop a new ChIpseq method (iChIP) to profile chromatin states of low cell number samples. We use IChIP to profile the chromatin dynamics during hematopoiesis across 16 different cell types which include the principal hematopoietic progenitors Examination of 2 different histone modifications in 2 cell types.
Project description:Interplays among lineage specific nuclear proteins, chromatin modifying enzymes and the basal transcription machinery govern cellular differentiation, but their dynamics of actions and coordination with transcriptional control are not fully understood. Alterations in chromatin structure appear to establish a permissive state for gene activation at some loci but they play an integral role in activation at other loci. To determine the predominant roles of chromatin states and factor occupancy in directing gene regulation during differentiation, we mapped chromatin accessibility, histone modifications, and nuclear factor occupancy genome-wide during mouse erythroid differentiation dependent on the master regulatory transcription factor GATA1. Remarkably, despite extensive changes in gene expression, the chromatin state profiles (proportions of a gene in a chromatin state dominated by activating or repressive histone modifications) and accessibility remain largely unchanged during GATA1-induced erythroid differentiation. In contrast, gene induction and repression are strongly associated with changes in patterns of transcription factor occupancy. Our results indicate that during erythroid differentiation, the broad features of chromatin states are established at the stage of lineage commitment, largely independently of GATA1. These determine permissiveness for expression, with subsequent induction or repression mediated by distinctive combinations of transcription factors. Using ChIP-Seq technology to examine DNase hypersensitivity, three transcription factors, and four histone modifications in Gata1-null murine G1E line and rescued G1E-ER4 subline, and also two of the transcription factors in mouse primary erythroblasts. ChIP input DNA was sequenced in each cell type as controls.
Project description:Somatic cells can be directly reprogrammed to pluripotency by exogenous expression of transcription factors, classically Oct4, Sox2, Klf4 and c-Myc. While distinct types of somatic cells can be reprogramed with varying efficiencies and by different modified reprogramming protocols, induced pluripotent stem cell (iPSC) induction remains inefficient and stochastic where a fraction of the cells converts into iPSCs. The nature of rate limiting barrier(s) preventing majority of cells to convert into iPSCs remains elusive. Here we show that neutralizing Mbd3, a core member of the Mbd3/NURD co-repressor and chromatin-remodeling complex, results in deterministic and synchronized reprogramming of multiple differentiated cell types to pluripotency. 100% of Mbd3 depleted mouse and human somatic cells convert into iPSCs after seven days of reprogramming factor induction. Our findings delineate a critical pathway blocking the reestablishment of pluripotency, and offer a novel platform for future dissection of epigenetic dynamics leading to iPSC formation at high resolution. Samples include Mbd3+/+, Mbd3flox/- and Mbd3-/- cells from mouse ES cells and mouse embryonic fibroblast (MEF) before and after DOX induction (initiating reprogramming by OSKM factors). Two histone modifications are given: H3K4me3, H3K27me3. In addition binding data of Mbd3 and Mi2B in various stages.