Spike-in Experiment for ChIP-chip Simulation
Ontology highlight
ABSTRACT: The most widely-used method for detecting genome-wide protein-DNA interactions is chromatin immunoprecipitation on tiling microarrays, commonly known as ChIP-chip. Here, we conducted the first objective analysis of tiling array platforms and analysis algorithms in a simulated ChIP-chip experiment. Mixtures of human genomic DNA and "spike-ins" comprised of nearly 100 human sequences at various concentrations were hybridized to four tiling array platforms by eight independent groups. Blind to the number of spike-ins, their locations, and the range of concentrations, each group made predictions of the spike-in locations. All commercial tiling array platforms performed well, although each platform and analysis algorithm had distinct performance and cost characteristics. Simple sequence repeats and genome redundancy tend to result in false positives on oligonucleotide platforms. The spike-in DNA samples and the resulting array data presented here provide a stable benchmark against which future ChIP platforms, protocol improvements, and analysis methods can be evaluated. Keywords: chip-ChIP simulation For data usage terms and conditions, please refer to http://www.genome.gov/27528022 and http://www.genome.gov/Pages/Research/ENCODE/ENCODEDataReleasePolicyFinal2008.pdf
ORGANISM(S): Homo sapiens
PROVIDER: GSE9732 | GEO | 2007/12/01
REPOSITORIES: GEO
ACCESS DATA