Transcriptome analysis of secreted proteins responding to nutrient-selection pressure
Ontology highlight
ABSTRACT: To determine secreted proteins that involved in adaptation of nutrient sources and response to nutrient stresses, we analyzed transcriptomes of Pochonia chlamydosporia strain 170 under three different nutrient conditions, CD (nutrient rich medium) that was predicted to repress parasitism, MM (nutrient-poor liquid minimal medium) that was predicted de-repress genes associated with parasitism, and MM-eggs(minimal medium with root-knot nematode eggs) that was prepared to induce parasitism.
Project description:Proteomic analysis on the secreted proteome of S.lividans TK24 growing in minimal medium (MM), minimal medium supplemented with casamino acids (MMCAS), nutrient broth medium (NB) or phage medium (Ph). Samples were taken in mid-log exponential, late-log exponential and stationary phase.
Project description:Transcriptionnal profiling of C. perfringens 13 strain comparing growth in minimal medium with 1 mM homocysteine with growth in minimal medium with 0.5 mM cystine.
Project description:Identification of global gene expression profiling when Haloferax volcanii H26 strain is grown in minimal medium supplemented with two nitrogen sources, 10 mM L-alanine and 10 mM ammonium chloride.
Project description:Transcriptional profile of prfA, the dependent genes and the PTS genes after growth in MM (minimal medium (Premaratne et al. 2001) supplemented with 50 mM glucose, cellobiose or glycerol. Keywords: prfA overexpressing strains
Project description:Summary: Salmonella enterica serovar Typhimurium strain 14028s transcriptome response to lettuce medium (LM) and lettuce root exudates (LX) to minimal medium (MM). Purpose: Salmonella mRNA profile, when grown in different media was compared to minimal medium to reveal environment specific transcriptional changes. Methods: mRNA profiles were generated using Illumina HiSeq in triplicates. The sequences were analysed using Bowtie2 followed by Cufflinks.
Project description:Summary: Salmonella enterica serovar Typhimurium strain 14028s transcriptome response to tomato medium (TM) and tomato root exudates (TX) compared to minimal medium (MM). Purpose: Salmonella mRNA profile, when grown in different media was compared to minimal medium to reveal environment specific transcriptional changes. Methods: mRNA profiles were generated using Illumina HiSeq in triplicates. The sequences were analysed using Bowtie2 followed by Cufflinks.
Project description:Transcriptional profiling of C. perfringens 13 strain compared with strain 13∆cpe1786 erm after growth in minimal medium with 0.5 mM cystine.
Project description:Transcriptional profile of prfA, the dependent genes and the PTS genes after growth in BHI (brain-heart-infusion), LB (Luria Bertani broth) and MM (minimal medium (Premaratne et al. 2001) (each supplemented with 50 mM Glucose). Keywords: media comparison
Project description:We report gene expression profiles for cultures grown in minimal salts medium with 125 mM methanol with and without addition of 2 uM lanthanum chloride
Project description:Inorganic phosphate (Pi) is a central nutrient and signal molecule for bacteria. Pi limitation was shown to increase the virulence of a number of phylogenetically diverse pathogenic bacteria with different in lifestyles. Hypophosphatemia enhances the risk of death in patients due to general bacteremia and was observed after the surgical injury in humans and animals. Phosphate therapy, or the reduction of bacterial virulence by the administration of Pi or phosphate-containing compounds, is a promising anti-infective therapy approach that will not cause cytotoxicity nor the emergence of antibiotic-resistant strains. The proof of concept of phosphate therapy has been obtained using primarily Pseudomonas aeruginosa (PA) as a model. However, a detailed understanding of Pi-induced changes at protein levels is missing. Using pyocyanin production as proxy, we show that the Pi-mediated induction of virulence is a highly cooperative process that occurs between 0.2 to 0.6 mM Pi. We present a proteomics study of PA grown in minimal medium supplemented with either 0.2 or 1 mM Pi and rich medium. About half of the predicted PA proteins could be quantified. Among the 1,471 dysregulated proteins comparing growth in 0.2 mM to 1 mM Pi, 1100 were depleted under Pi-deficient conditions. Most of these proteins are involved in general and energy metabolism, different biosynthetic and catabolic routes, or transport. Pi depletion caused accumulation of proteins that belong to all major families of virulence factor categories, including pyocyanin synthesis, secretion systems, quorum sensing, chemosensory signaling and the secretion of proteases, phospholipases and phosphatases.