Integrated time course omics analysis distinguishes immediate therapeutic response from acquired resistance (RNA-Seq)
Ontology highlight
ABSTRACT: BACKGROUND: Targeted therapies specifically act by blocking the activity of proteins that are encoded by genes critical for tumorigenesis. However, most cancers acquire resistance and long-term disease remission is rarely observed. Understanding the time course of molecular changes responsible for the development of acquired resistance could enable optimization of patients treatment options. Clinically, acquired therapeutic resistance can only be studied at a single time point in resistant tumors. To determine the dynamics of these molecular changes, we obtained high throughput omics data weekly during the development of cetuximab resistance in a head and neck cancer in vitro model. RESULTS: An unsupervised algorithm, CoGAPS, was used to quantify the evolving transcriptional and epigenetic changes. Applying a PatternMarker statistic to the results from CoGAPS enabled novel heatmap-based visualization of the dynamics in these time course omics data. We demonstrate that transcriptional changes result from immediate therapeutic response or resistance, whereas epigenetic alterations only occur with resistance. Integrated analysis demonstrates delayed onset of changes in DNA methylation relative to transcription, suggesting that resistance is stabilized epigenetically. CONCLUSIONS: Genes with epigenetic alterations associated with resistance that have concordant expression changes are hypothesized to stabilize resistance. These genes include FGFR1, which was associated with EGFR inhibitor resistance previously. Thus, integrated omics analysis distinguishes the timing of molecular drivers of resistance. Our findings provide a relevant towards better understanding of the time course progression of changes resulting in acquired resistance to targeted therapies. This is an important contribution to the development of alternative treatment strategies that would introduce new drugs before the resistant phenotype develops.
Project description:BACKGROUND: Targeted therapies specifically act by blocking the activity of proteins that are encoded by genes critical for tumorigenesis. However, most cancers acquire resistance and long-term disease remission is rarely observed. Understanding the time course of molecular changes responsible for the development of acquired resistance could enable optimization of patients treatment options. Clinically, acquired therapeutic resistance can only be studied at a single time point in resistant tumors. To determine the dynamics of these molecular changes, we obtained high throughput omics data weekly during the development of cetuximab resistance in a head and neck cancer in vitro model. RESULTS: An unsupervised algorithm, CoGAPS, was used to quantify the evolving transcriptional and epigenetic changes. Applying a PatternMarker statistic to the results from CoGAPS enabled novel heatmap-based visualization of the dynamics in these time course omics data. We demonstrate that transcriptional changes result from immediate therapeutic response or resistance, whereas epigenetic alterations only occur with resistance. Integrated analysis demonstrates delayed onset of changes in DNA methylation relative to transcription, suggesting that resistance is stabilized epigenetically. CONCLUSIONS: Genes with epigenetic alterations associated with resistance that have concordant expression changes are hypothesized to stabilize resistance. These genes include FGFR1, which was associated with EGFR inhibitor resistance previously. Thus, integrated omics analysis distinguishes the timing of molecular drivers of resistance. Our findings provide a relevant towards better understanding of the time course progression of changes resulting in acquired resistance to targeted therapies. This is an important contribution to the development of alternative treatment strategies that would introduce new drugs before the resistant phenotype develops.
Project description:Endocrine therapies targeting the proliferative effect of 17β-estradiol (17βE2) through estrogen receptor α (ERα) are the most effective systemic treatment of ERα-positive breast cancer. However, most breast tumors initially responsive to these therapies develop resistance through a molecular mechanism that is not yet fully understood. The long-term estrogen-deprived (LTED) MCF7 cell model has been proposed to recapitulate acquired resistance to aromatase inhibitors (AIs) in postmenopausal women. To elucidate this resistance, genomic, transcriptomic and molecular data were integrated into the time course of MCF7-LTED adaptation. Dynamic and widespread genomic changes were observed, including amplification of the ESR1 locus consequently linked to an increase in ERα. Dynamic transcriptomic profiles were also observed that correlated significantly with genomic changes and were influenced by transcription factors known to be involved in acquired resistance or cell proliferation (e.g. IRF1 and E2F1, respectively) but, notably, not by canonical ERα transcriptional function. Consistently, at the molecular level, activation of growth factor signaling pathways by EGFR/ERBB/AKT and a switch from phospho-Ser118 (pS118)- to pS167-ERα were observed during MCF7-LTED adaptation. Evaluation of relevant clinical settings identified significant associations between MCF7-LTED and breast tumor transcriptome profiles that characterize ERα-negative status, early response to letrozole and recurrence after tamoxifen treatment. This study proposes a mechanism for acquired resistance to estrogen deprivation that is coordinated across biological levels and independent of canonical ERα function. LTED (long term estrogen deprived) cell line was generated from MCF-7 cells by long-term culture under estrogen deprivated conditions. And RNA samples were obtained after 3, 15, 30, 90, 120, 150 and 180 days.
Project description:Endocrine therapies targeting the proliferative effect of 17β-estradiol (17βE2) through estrogen receptor α (ERα) are the most effective systemic treatment of ERα-positive breast cancer. However, most breast tumors initially responsive to these therapies develop resistance through a molecular mechanism that is not yet fully understood. The long-term estrogen-deprived (LTED) MCF7 cell model has been proposed to recapitulate acquired resistance to aromatase inhibitors (AIs) in postmenopausal women. To elucidate this resistance, genomic, transcriptomic and molecular data were integrated into the time course of MCF7-LTED adaptation. Dynamic and widespread genomic changes were observed, including amplification of the ESR1 locus consequently linked to an increase in ERα. Dynamic transcriptomic profiles were also observed that correlated significantly with genomic changes and were influenced by transcription factors known to be involved in acquired resistance or cell proliferation (e.g. IRF1 and E2F1, respectively) but, notably, not by canonical ERα transcriptional function. Consistently, at the molecular level, activation of growth factor signaling pathways by EGFR/ERBB/AKT and a switch from phospho-Ser118 (pS118)- to pS167-ERα were observed during MCF7-LTED adaptation. Evaluation of relevant clinical settings identified significant associations between MCF7-LTED and breast tumor transcriptome profiles that characterize ERα-negative status, early response to letrozole and recurrence after tamoxifen treatment. This study proposes a mechanism for acquired resistance to estrogen deprivation that is coordinated across biological levels and independent of canonical ERα function.
Project description:Treatments for kidney fibrosis represent an urgent yet unmet clinical need. Effective therapies are limited due to not well understood molecular pathogenesis. We aimed at generating a comprehensive and integrated multi-omics data set (RNA/ microRNA transcriptomics and proteomics) of fibrotic kidneys which will be searchable through a user-friendly web application. Therefore, two commonly used mouse models were utilized: a reversible chemical-induced injury model (folic acid (FA) induced nephropathy) and an irreversible surgical-induced fibrosis model (unilateral ureteral obstruction (UUO)). RNA and small RNA sequencing as well as MS/MS with 10-plex tandem mass tags proteomics were performed with kidney samples from different time points over the course of fibrosis development. In summary, we present temporal and integrated multi-omics data from fibrotic mouse kidneys which are accessible through an interrogation tool to provide a searchable transcriptome and proteome for kidney fibrosis researcher.
Project description:Treatments for kidney fibrosis represent an urgent yet unmet clinical need. Effective therapies are limited due to not well understood molecular pathogenesis. We aimed at generating a comprehensive and integrated multi-omics data set (RNA/ microRNA transcriptomics and proteomics) of fibrotic kidneys which will be searchable through a user-friendly web application. Therefore, two commonly used mouse models were utilized: a reversible chemical-induced injury model (folic acid (FA) induced nephropathy) and an irreversible surgical-induced fibrosis model (unilateral ureteral obstruction (UUO)). RNA and small RNA sequencing as well as MS/MS with 10-plex tandem mass tags proteomics were performed with kidney samples from different time points over the course of fibrosis development. In summary, we present temporal and integrated multi-omics data from fibrotic mouse kidneys which are accessible through an interrogation tool to provide a searchable transcriptome and proteome for kidney fibrosis researcher.
Project description:The identification of the potential mechanisms of resistance while tumor cells still respond to therapy is critical to develop combination therapies to delay acquired resistance. Cetuximab, an anti-EGFR therapy, is the only targeted therapy available for head and neck squamous cell carcinoma (HNSCC). We generated the first comprehensive multi-omics, bulk and single cell data in sensitive HNSCC cells to identify relevant transcriptional and epigenetic changes that are an immediate response to cetuximab in sensitive cells. These changes include genes from two pathways potentially associated with resistance: regulation of growth factor receptors through the transcription factor TFAP2A, and epithelial-to-mesenchymal transition (EMT) process. Single cell RNA-sequencing demonstrates inter-cell lines heterogeneity, with cell specific expression profiles of TFAP2A and VIM gene expression in cetuximab treated and untreated clones, and an independent role of each pathway. RNA-seq and ATAC-seq demonstrate that there are global transcriptional and epigenetic changes within the first five days of anti-EGFR therapy. We also experimentally verified that lack of TFAP2A reduces HNSCC growth in vitro and that this effect is enhanced with cetuximab and a stronger effect is observed with JQ1, an inhibitor of alternative receptor tyrosine kinases. Corroborating our scRNA-seq observation, TFAP2A silencing does not affect cell migration, supporting the lack of interplay with the EMT pathway. Overall, our study shows that the immediate adaptive transcriptional and epigenetic changes induced by cetuximab include relevant pathways associated with acquired resistance. Although heterogeneous, these changes can be targeted by a multiple-target drug as JQ1 that in combination with cetuximab in the early stage of treatment present better efficacy in controlling tumor growth.
Project description:The identification of the potential mechanisms of resistance while tumor cells still respond to therapy is critical to develop combination therapies to delay acquired resistance. Cetuximab, an anti-EGFR therapy, is the only targeted therapy available for head and neck squamous cell carcinoma (HNSCC). We generated the first comprehensive multi-omics, bulk and single cell data in sensitive HNSCC cells to identify relevant transcriptional and epigenetic changes that are an immediate response to cetuximab in sensitive cells. These changes include genes from two pathways potentially associated with resistance: regulation of growth factor receptors through the transcription factor TFAP2A, and epithelial-to-mesenchymal transition (EMT) process. Single cell RNA-sequencing demonstrates inter-cell lines heterogeneity, with cell specific expression profiles of TFAP2A and VIM gene expression in cetuximab treated and untreated clones, and an independent role of each pathway. RNA-seq and ATAC-seq demonstrate that there are global transcriptional and epigenetic changes within the first five days of anti-EGFR therapy. We also experimentally verified that lack of TFAP2A reduces HNSCC growth in vitro and that this effect is enhanced with cetuximab and a stronger effect is observed with JQ1, an inhibitor of alternative receptor tyrosine kinases. Corroborating our scRNA-seq observation, TFAP2A silencing does not affect cell migration, supporting the lack of interplay with the EMT pathway. Overall, our study shows that the immediate adaptive transcriptional and epigenetic changes induced by cetuximab include relevant pathways associated with acquired resistance. Although heterogeneous, these changes can be targeted by a multiple-target drug as JQ1 that in combination with cetuximab in the early stage of treatment present better efficacy in controlling tumor growth.