Project description:The intermediate filament protein Nestin serves as a biomarker for stem cells and has been used to identify subsets of cancer stem-like cells. However, the mechanistic contributions of Nestin to cancer pathogenesis are not understood. Here we report that Nestin binds the hedgehog pathway transcription factor Gli3 to mediate the development of medulloblastomas of the hedgehog subtype. In a mouse model system, Nestin levels increased progressively during medulloblastoma formation resulting in enhanced tumor growth. Conversely, loss of Nestin dramatically inhibited proliferation and promoted differentiation. Mechanistic investigations revealed that the tumor-promoting effects of Nestin were mediated by binding to Gli3, a zinc finger transcription factor that negatively regulates hedgehog signaling. Nestin binding to Gli3 blocked Gli3 phosphorylation and its subsequent proteolytic processing, thereby abrogating its ability to negatively regulate the hedgehog pathway. Our findings show how Nestin drives hedgehog pathway-driven cancers and uncover in Gli3 a therapeutic target to treat these malignancies. Nestin+ and Nestin- GNPs (granule neuron precursors) were purified from Nestin-CFP/Math1-Cre/Ptch1-loxp cerebella at postnatal day 4 by FACs, and total RNA from these two cell populations were extracted, and then labeled and hybridized to Affymetrix Mouse Genome 430 2.0 arrays.
Project description:Transgene loci were transfered in different Arabidopsis thaliana mutant backgrounds by crossing. Small RNA molecules were extracted and sequenced to survey the influence of mutations on transgene small RNA biogenesis.
Project description:The intermediate filament protein Nestin serves as a biomarker for stem cells and has been used to identify subsets of cancer stem-like cells. However, the mechanistic contributions of Nestin to cancer pathogenesis are not understood. Here we report that Nestin binds the hedgehog pathway transcription factor Gli3 to mediate the development of medulloblastomas of the hedgehog subtype. In a mouse model system, Nestin levels increased progressively during medulloblastoma formation resulting in enhanced tumor growth. Conversely, loss of Nestin dramatically inhibited proliferation and promoted differentiation. Mechanistic investigations revealed that the tumor-promoting effects of Nestin were mediated by binding to Gli3, a zinc finger transcription factor that negatively regulates hedgehog signaling. Nestin binding to Gli3 blocked Gli3 phosphorylation and its subsequent proteolytic processing, thereby abrogating its ability to negatively regulate the hedgehog pathway. Our findings show how Nestin drives hedgehog pathway-driven cancers and uncover in Gli3 a therapeutic target to treat these malignancies.
Project description:We report the small RNA transcriptome of testicular extracellular vesicles in mouse testis. We established a testis dissociation protocol to isolate testicular extracellular vesicles. After treatment with proteinase K and RNase A, the RNA inside the extracellular vesicles was extracted and sequenced by small RNA-seq.
Project description:The goal of this study was to perform transcriptomics on vehicle-, UK5099-, Butyrate-, and UK5099+Butyrate-treated mouse prostate organoids. We used FACS to isolate basal cells from C57BL/6 mouse prostates and treated with small molecules for one week before harvesting for RNA-sequencing.
Project description:We demonstrate induction and long-term maintenance of totipotent stem cells (TotiSCs) from mouse pluripotent stem cells (PSCs) by a combination of three small molecules, TTNPB, 1-Azakenpaullone, and WS6. These cells, which we designated as ciTotiSCs (chemically induced totipotent stem cells), resembled mouse totipotent 2C-embryo stage cells at both transcriptome and epigenome level.