ABSTRACT: Fecal samples were collected from Trypanosoma cruzi-infected (strain CL+Luc) and uninfected mice for up to 3 months post-infection. Samples were extracted with 50% methanol.
Project description:These assays represent an antigen discovery screening, and epitope mapping characterization. In this screening two complete proteomes from Trypanosoma cruzi, from two different strains (CL-Brener, Sylvio X10), were displayed in the form of short peptides (tiling array, overlapped) and assayed with pooled serum samples (antibodies) from Chagas Disease patients and matched negative (healthy) subjects selected from 6 geographic regions across the Americas. Peptide arrays (slides) were incubated with pooled serum samples (primary antibodies), washed, and then incubated with a fluorescently-labeled anti-human IgG commercial antibody (secondary antibodies). Raw readouts of fluoresence (signal), as well as normalized signal values are provided in this submission for all samples analyzed. All samples were analyzed in duplicate.
Project description:As Trypanosoma cruzi, the etiological agent of Chagas disease, multiplies in the cytoplasm of nucleated host cells, infection with this parasite is highly likely to affect host cells. We performed an exhaustive transcriptome analysis of T. cruzi-infected HeLa cells using an oligonucleotide microarray containing probes for greater than 47,000 human gene transcripts. In comparison with uninfected cells, those infected with T. cruzi showed greater than threefold up-regulation of 41 genes and greater than threefold down-regulation of 23 genes. Real-time reverse transcriptase-polymerase chain reaction (RT-PCR) of selected, differentially expressed genes confirmed the microarray data. Many of these up- and down-regulated genes were related to cellular proliferation, including seven up-regulated genes encoding proliferation inhibitors and three down-regulated genes encoding proliferation promoters, strongly suggesting that T. cruzi infection inhibits host cell proliferation, which may allow more time for T. cruzi to replicate and produce its intracellular nests. These findings provide new insight into the molecular mechanisms by which intracellular T. cruzi infection influences the host cell, leading to pathogenicity. Keywords: infection response
Project description:As Trypanosoma cruzi, the etiological agent of Chagas disease, multiplies in the cytoplasm of nucleated host cells, infection with this parasite is highly likely to affect host cells. We performed an exhaustive transcriptome analysis of T. cruzi-infected HeLa cells using an oligonucleotide microarray containing probes for greater than 47,000 human gene transcripts. In comparison with uninfected cells, those infected with T. cruzi showed greater than threefold up-regulation of 41 genes and greater than threefold down-regulation of 23 genes. Real-time reverse transcriptase-polymerase chain reaction (RT-PCR) of selected, differentially expressed genes confirmed the microarray data. Many of these up- and down-regulated genes were related to cellular proliferation, including seven up-regulated genes encoding proliferation inhibitors and three down-regulated genes encoding proliferation promoters, strongly suggesting that T. cruzi infection inhibits host cell proliferation, which may allow more time for T. cruzi to replicate and produce its intracellular nests. These findings provide new insight into the molecular mechanisms by which intracellular T. cruzi infection influences the host cell, leading to pathogenicity. Experiment Overall Design: Three replicates of infected and uninfected HeLa cell were analyzed. To examine the extent of cross hybridization between T. cruzi cRNA and Human chip, trypomastigote cRNA was hybridized with the same chip.
Project description:To provide a global perspective on the relationships between macrophage activation programs and to understand how certain pathogens circumvent them, we used transcriptional profiling by genome wide microarray analysis to compare the responses of mouse macrophages following exposure to the intracellular parasites Trypanosoma cruzi and Leishmania mexicana, the bacterial product lipopolysaccharide (LPS), and the cytokines IFNG, TNF, IFNB, IL-4, IL-10, and IL-17. We found that LPS induced a classical activation state that resembled macrophage stimulation by the Th1 cytokines IFNG and TNF. However, infection by the protozoan pathogen Leishmania mexicana produced so few transcriptional changes that the infected macrophages were almost indistinguishable from uninfected cells. Trypanosoma cruzi activated macrophages produced a transcriptional signature characterized by the induction of interferon-stimulated genes by 24 h post-infection. Despite this delayed IFN response by T. cruzi, the transcriptional response of macrophages infected by the kinetoplastid pathogens more closely resembled the transcriptional response of macrophages stimulated by the cytokines IL-4, IL-10, and IL-17 than macrophages stimulated by Th1 cytokines. Keywords: Bone marrow macrophage response to intracellular parasites and cytokines
Project description:5-week old male and female Swiss Webster mice were infected with 500,000 Trypanosoma cruzi strain Sylvio X/104 parasites. Urine was collected from uninfected mice pre-infection, from infected and uninfected mice every week for 5 weeks post infection, from infected and uninfected mice 67 (females)/68 (males) days post infection, and from infected and uninfected mice 117 (females)/124 (males) days post infection for acute, mid-chronic, and chronic time-points. Metabolites were extracted with methanol and a targeted PRM LCMS analysis was ran on a Thermo Q Exactive Plus instrument with a Phenomenex Luna Omega Polar C18 column.
Project description:5-week old male and female Swiss Webster mice were infected with 500,000 Trypanosoma cruzi strain Sylvio X10/4 parasites. Urine was collected from uninfected mice pre-infection, from infected and uninfected mice every week for 5 weeks post infection, from infected and uninfected mice 67 (females)/68 (males) days post infection, and from infected and uninfected mice 117 (females)/124 (males) days post infection for acute, mid-chronic, and chronic time-points. Metabolites were extracted with methanol and an untargeted LCMS analysis was ran on a Thermo Q Exactive Plus instrument with a Phenomenex Luna Omega Polar C18 column.
Project description:An efficient innate immune recognition of the intracellular parasite T. cruzi is crucial for host protection against development of Chagas disease, which often leads to multiple organ damage, particularly the heart leading to cardiomyopathy. Mechanisms modulated by MyD88 have been shown to be necessary for resistance against T, cruzi infection. Recently, Nod-like receptors have been shown to play an important role as innate immune sensors, particularly as they relate to inflammasome function, caspase activation, and inflammatory cytokine production. In this study, we aimed to investigate the participation of innate immune responses in general, and inflammasomes in particular, in heart inflammation and cardiac damage upon infection with the T. cruzi parasite. We used microarrays to gain insight into gene expression in the cardiac tissue of mice infected with the causative agent of Trypanosoma cruzi, and identified distinct classes of up-regulated genes during this process, including important genes involved in inflammasome activation and innate immune responses in general. The hearts of C57BL/6 mice day 18 post-infection with a Y strain of the parasite T. cruzi, and uninfected controls were extraced for RNA extraction and hybridization on Affymetrix microarrays. We sought to compare gene expression among two groups of mice, and so extracted the hearts of 3 control uninfected mice, and of 3 infected mice 18 days post-infection.
Project description:To provide a global perspective on the relationships between macrophage activation programs and to understand how certain pathogens circumvent them, we used transcriptional profiling by genome wide microarray analysis to compare the responses of mouse macrophages following exposure to the intracellular parasites Trypanosoma cruzi and Leishmania mexicana, the bacterial product lipopolysaccharide (LPS), and the cytokines IFNG, TNF, IFNB, IL-4, IL-10, and IL-17. We found that LPS induced a classical activation state that resembled macrophage stimulation by the Th1 cytokines IFNG and TNF. However, infection by the protozoan pathogen Leishmania mexicana produced so few transcriptional changes that the infected macrophages were almost indistinguishable from uninfected cells. Trypanosoma cruzi activated macrophages produced a transcriptional signature characterized by the induction of interferon-stimulated genes by 24 h post-infection. Despite this delayed IFN response by T. cruzi, the transcriptional response of macrophages infected by the kinetoplastid pathogens more closely resembled the transcriptional response of macrophages stimulated by the cytokines IL-4, IL-10, and IL-17 than macrophages stimulated by Th1 cytokines. Keywords: Bone marrow macrophage response to intracellular parasites and cytokines We analyzed a series MEEBO arrays on which were hybed RNA amplified from bone marrow-derived macrophages from C57BL/6 mice. Macrophages infected with L. mexicana or T. cruzi or stimulated by LPS, IFNG, IL-4, IL-10, TNF, IFNB, or IL-17 were compared to one another as well as to uninfected, unstimulated control macrophages. All experiments were performed over a 24 h timecourse with timepoints taken at 2 h, 6 h, 12 h, and 24 h.