ABSTRACT: Untargeted metabolomics of mouse intestinal and serum tissue
from adult mice infected with LCMV. Data was acquired using a Thermo Q-Exactive and C18 RP-UHPLC.
Project description:Untargetted metabolomics of mouse vaginal, cervix, and uterine tissue from adult mice colonized with GBS, candida or trichomonas. Data was acquired using a Bruker Daltronics maXis Impact and a C18 RP-UHPLC system. Positive polarity acquisition of LC-MS/MS
Project description:To understand the impact of murine rotavirus infection on mouse intestinal epithelial tissue, we isolated total intestinal epithelium from uninfected and infected C57Bl6J mice and performed single-cell RNAseq.
Project description:mRNA expression data from BALB/c mice which were infected intranasally with Respiratory Syncytial Virus (or Hep-2 cell lysate control) at 1 week old and challenged with PBS or house dust mite (HDM) extract as adults. Experimental groups: RH – neonatal RSV, adult HDM, RP – neonatal RSV, adult PBS, HH – neonatal Hep-2, adult HDM and HP – neonatal Hep-2, adult PBS.
Project description:Serum of LCMV infected mice. Data was generated on a Thermo Q Exactive and C18 RP UHPLC. Positive polarity acquisition on LC-MS/MS.
Project description:Background. Pneumocystis jirovecii pneumonia (PCP) is a leading cause of fungal pneumonia, but its diagnosis primarily relies on invasive bronchoalveolar lavage (BAL) specimens that are difficult to obtain. Oropharyngeal swabs and serum could improve the PCP diagnostic workflow, and we hypothesized that CRISPR could enhance assay sensitivity to allow robust P. jirovecii diagnosis using swabs and serum. Herein we describe the development of an ultrasensitive RT-PCR-coupled CRISPR assay with high active-infection specificity in infant swabs and adult BAL and serum. Methods. Mouse analyses employed an RT-PCR CRISPR assay to analyze P. murina transcripts in wild-type and Rag2-/- mouse lung RNA, BAL, and serum at 2-, 4-, and 6-weeks post-infection. Human studies used an optimized RT-PCR CRISPR assay to detect P. jirovecii transcripts in infant oropharyngeal swab samples, adult serum, and adult BAL specimens from P. jirovecii-infected and P. jirovecii-non-infected patients. Results. The P. murina assays sensitively detected Pneumocystis RNA in the serum of infected mice throughout infection. Oropharyngeal swab CRISPR assay results identified infants infected with P. jirovecii with greater sensitivity (96.3% vs. 66.7%) and specificity (100% vs. 90.6%) than RT-qPCR compared to mtLSU standard marker, and CRISPR results achieved higher sensitivity than RT-qPCR results (93.3% vs. 26.7%) in adult serum specimens. Conclusion. Since swabs are routinely collected in pediatric pneumonia patients, serum is easier to obtain than BAL, and RT-PCR CRISPR results may not detect P. jirovecii colonization, this assay approach could improve pediatric Pneumocystis diagnosis by achieving specificity for active infection and avoiding the requirement for BAL specimens.
Project description:Fecal samples were collected from Trypanosoma cruzi-infected (strain CL+Luc) and uninfected mice for up to 3 months post-infection. Samples were extracted with 50% methanol.
Project description:Transcriptional profiling of intestinal response to Citrobacter rodentium in wild-type and Nlrp12-deficient mice Four-conditions experiment, Nlrp12-deficient mouse infected by Citrobacter rodentium at day 7 versus non-infected Nlrp12-deficient mice with two biologicals replicates , Wild-type mouse infected by Citrobacter rodentium at day 7 versus non-infected Wild-type mice with two biologicals replicates and Nlrp12-deficient mouse infected by Citrobacter rodentium versus Control mouse infected by Citrobacter rodentium at 2 differents times ( day 0 and post infection at day 7 ) with three biologicals replicates
Project description:To analyse the peptidomics of mouse enteroendocrine cells (EECs) and human gastrointestinal (GI) tissue and identify novel gut derived peptides. High resolution nano-flow liquid chromatography mass spectrometry (LCMS) was performed on (i) flow-cytometry purified NeuroD1 positive cells from mouse and homogenised human intestinal biopsies, (ii) supernatants from primary murine intestinal cultures, (iii) intestinal homogenates from mice fed high fat diet. Candidate bioactive peptides were selected on the basis of species conservation, high expression/biosynthesis in EECs and evidence of regulated secretion in vitro. Candidate novel gut-derived peptides were chronically administered to mice to assess effects on food intake and glucose tolerance.
Project description:The biological underpinnings of major depressive disorder (MDD) heterogeneity are unknown, in part due to the poor association between MDD models and clinical endpoints. We compared transcriptomic profiles of human postmortem MDD brain tissue and chronic variable stress (CVS)-exposed mice to identify orthologous genes. A downregulation of ribosomal protein genes (RPGs) and upregulation of associated RP pseudogenes in the prefrontal cortex of several independent cohorts from both human MDD and mouse CVS tissue prompted a seeded gene co-expression analysis using the RPGs altered in both groups. Downregulated RPGs were found to regulate synaptic changes in human MDD and mouse CVS through a RP pseudogene-driven mechanism. In vitro and in silico analysis further suggested that the inverse RPG/RP pseudogene association was a glucocorticoid-driven response and reversed during MDD remission. Thus, stress-induced alterations in RPGs may contribute to synaptic dysregulation in MDD, providing a mechanism for the variability in depression presentation.