Project description:Antemortem infection is a risk factor for sudden infant death syndrome (SIDS) – the leading postneonatal cause of infant mortality in the developed world. Manifestations of infection and attendant inflammation, however, are not always apparent in clinical settings or by standard autopsy, thus enhanced resolution approaches are needed. Here we screened postmortem SIDS tissues and fluids for inflammatory markers and applied metagenomics and transcriptomics to a subset of cases to look for evidence of occult infection and inflammation.
Project description:Extensive molecular and prognostic characterization of wild-type MLL infant ALL. Background: Approximately 20% of all infant ALL cases carry wild-type (or germline) MLL genes. To date, wild-type MLL infant ALL patients are generally regarded as young pediatric precursor B-ALL patients, but extensive characterization of this specific patient group largely remains unacknowledged. Methods: We here studied a relatively large cohort of 78 wild-type MLL infant ALL samples, using clinical parameters, array-comparative genomic hybridization analysis, gene expression profiling, multiplex ligation-dependent probe amplification, and conventional sequencing. Findings: Wild-type MLL infant ALL patients are generally characterized by a lower incidence of favourable prognostic factors than pediatric (non-infant) B-ALL patients, and patients at high risk of therapy failure typically display an immature pro-B immunophenotype or respond poorly to prednisone. Using gene expression profiling, we found MEIS1 expression to additionally be highly predictive for clinical outcome in wild-type MLL infant ALL with a favourable prognosis in the wild-type MLL infants with low MEIS1 expression (DFS 88%% versus 50%, p=0•01). Overall the incidence of DNA copy number variations and genetic abnormalities in genes involved in B-cell differentiation is lower in wild-type MLL infant ALL patients as compared with pediatric precursor B-ALL patients. Interpretation: Wild-type MLL infant ALL represents a highly heterogeneous patient group, which cannot be unified by one or a few known recurrent genomic aberrations. High-level MEIS1 expression and an immature pro-B immunophenotype in high-risk wild-type MLL infant ALL patients shows parallel with the unfavourable prognosis of MLL-rearranged infant ALL patients. In contrast, wild-type MLL infant ALL patients expressing lower levels of MEIS1 and displaying more differentiated (pre-B or common) phenotypes may well be more related to pediatric precursor B-ALL patients older than 1 year of age. We advocate that a treatment strategy in wild-type MLL infant ALL based on MEIS1 expression could be beneficial for improving survival. Gene expression profiling of wild-type MLL infant ALL. Additional wild-type MLL infant ALL patient samples (n=17) to the earlier samples published under GSE19475 (GSM485309 to GSM485322).
Project description:The aggressive MLL-rearranged leukemias are well-known for their unique gene-expression profiles. The goal of this study was to characterize the MLL-specific DNA methylation profiles in infant acute lymphoblastic leukemia (ALL). Genome-wide DNA methylation profiling was performed on primary infant ALL samples. The majority of infant ALL samples demonstrated severe DNA hypermethylation compared with normal pediatric bone marrows, which implies that targeting of DNA methylation may be an interesting option for future therapeutic strategies in MLL-rearranged infant ALL. Using ALL cell lines carrying the MLL translocation t(4;11) (SEMK2 and RS4;11) as a model for the patient cells, we demonstrated that the hypermethylated genes are sensitive to demethylation.
Project description:Extensive molecular and prognostic characterization of wild-type MLL infant ALL. Background: Approximately 20% of all infant ALL cases carry wild-type (or germline) MLL genes. To date, wild-type MLL infant ALL patients are generally regarded as young pediatric precursor B-ALL patients, but extensive characterization of this specific patient group largely remains unacknowledged. Methods: We here studied a relatively large cohort of 78 wild-type MLL infant ALL samples, using clinical parameters, array-comparative genomic hybridization analysis, gene expression profiling, multiplex ligation-dependent probe amplification, and conventional sequencing. Findings: Wild-type MLL infant ALL patients are generally characterized by a lower incidence of favourable prognostic factors than pediatric (non-infant) B-ALL patients, and patients at high risk of therapy failure typically display an immature pro-B immunophenotype or respond poorly to prednisone. Using gene expression profiling, we found MEIS1 expression to additionally be highly predictive for clinical outcome in wild-type MLL infant ALL with a favourable prognosis in the wild-type MLL infants with low MEIS1 expression (DFS 88%% versus 50%, p=0•01). Overall the incidence of DNA copy number variations and genetic abnormalities in genes involved in B-cell differentiation is lower in wild-type MLL infant ALL patients as compared with pediatric precursor B-ALL patients. Interpretation: Wild-type MLL infant ALL represents a highly heterogeneous patient group, which cannot be unified by one or a few known recurrent genomic aberrations. High-level MEIS1 expression and an immature pro-B immunophenotype in high-risk wild-type MLL infant ALL patients shows parallel with the unfavourable prognosis of MLL-rearranged infant ALL patients. In contrast, wild-type MLL infant ALL patients expressing lower levels of MEIS1 and displaying more differentiated (pre-B or common) phenotypes may well be more related to pediatric precursor B-ALL patients older than 1 year of age. We advocate that a treatment strategy in wild-type MLL infant ALL based on MEIS1 expression could be beneficial for improving survival.
Project description:Proteomic analysis of serum IgG antibody repertoire against influenza vaccine HAs in infant donors vaccinated with Fluzone 2017-18/18-19. Dataset consists of peak-response (days 14 and 21 post-vaccination) serum IgG samples eluted by affinity chromatography against IAV or IBV hemagglutinin and the flow-throughs.
Project description:Prenatal exposures such as infections and immunisation may influence infant responses. We had an opportunity to undertake an analysis of responses in infants within the context of a study investigating the effects of maternal mycobacterial exposures and infection on bacille Calmette-Guerin (BCG) vaccine-induced responses in Ugandan infants. Gene expression profiles for pathways associated with maternal LTBI and with maternal BCG scar were examined using samples collected at one (n=42) and six (n=51) weeks after BCG immunisation using microarray. Interferon and inflammation response pathways were up-regulated in infants of mothers with LTBI at six weeks, and in infants of mothers with a BCG scar at one and six weeks after BCG immunisation. Maternal BCG scar had a stronger association with infant responses than maternal LTBI, with an increased proinflammatory immune profile.