ABSTRACT: MS-2 data of four Indian varieties of Glycine max (soybean). N1 and N2 files represent MS2 data in run negative ion mode whereas, P1 & P2 represent to positive ion mode.
Project description:MS2 data for two Indian varieties of Triticum aestivum L. (Wheat). P1 to P5 files represent MS2 data in positive ESI mode whereas N1 to N5 files represent MS2 data in negative ESI mode.
Project description:MS2 data for two Indian varieties of Triticum aestivum L. (Wheat). P1 to P5 files represent MS2 data in positive ESI mode whereas N1 to N5 files represent MS2 data in negative ESI mode.
Project description:Aluminum (Al) toxicity is an important restraint to soybean (Glycine max L. Merr.) production on acid soils. However, little is known about the genes underlying Al tolerance in soybean. We used microarrays to detail the global programme of gene expression under control and Al stress in two soybean at 6, 12, and 24 h.
Project description:The nuclei of Glycine max from different tissues were collected. The samples were: soybean seed mid-maturation stage (10mm), seed late cotyledon stage (5mm), seed early cotyledon stage (3mm), seed heart stage (1mm), soybean green pods without seeds (stage), soybean flower bud (early flowering stage), soybean shoot apical meristem (stage), soybean trifoliate leaf (R5 stage), and soybean true leave (stage). The library construction was performed applying 10 Genomics technology.
Project description:Soybean (Glycine max) seeds are an important source of seed storage compounds, including protein, oil, and sugar used for food, feed, chemical, and biofuel production. We assessed detailed temporal transcriptional and metabolic changes in developing soybean embryos to gain a systems biology view of developmental and metabolic changes and to identify potential targets for metabolic engineering. Two major developmental and metabolic transitions were captured enabling identification of potential metabolic engineering targets specific to seed filling and to desiccation. The first transition involved a switch between different types of metabolism in dividing and elongating cells. The second transition involved the onset of maturation and desiccation tolerance during seed filling and a switch from photoheterotrophic to heterotrophic metabolism. Clustering analyses of metabolite and transcript data revealed clusters of functionally related metabolites and transcripts active in these different developmental and metabolic programs. The gene clusters provide a resource to generate predictions about the associations and interactions of unknown regulators with their targets based on “guilt-by-association” relationships. The inferred regulators also represent potential targets for future metabolic engineering of relevant pathways and steps in central carbon and nitrogen metabolism in soybean embryos and drought and desiccation tolerance in plants. SUBMITTER_CITATION: Biology 2013, 2(4), 1311-1337; doi:10.3390/biology2041311 Changes in RNA Splicing in Developing Soybean (Glycine max) Embryos Delasa Aghamirzaie, Mahdi Nabiyouni, Yihui Fang, Curtis Klumas, Lenwood S. Heath, Ruth Grene and Eva Collakova SUBMITTER_CITATION: Metabolites 2013, 3(2), 347-372; doi:10.3390/metabo3020347 Metabolic and Transcriptional Reprogramming in Developing Soybean (Glycine max) Embryos Eva Collakova, Delasa Aghamirzaie, Yihui Fang, Curtis Klumas, Farzaneh Tabataba, Akshay Kakumanu, Elijah Myers, Lenwood S. Heath and Ruth Grene Total mRNA profiles of 10 time course samples of Soybean developing embryos with three replicates per sample were generated by deep sequencing, using Illumina HiSeq 2000
Project description:Sclerotinia sclerotiorum is a broad-host range necrotrophic pathogen which is the causative agent of Sclerotinia stem rot (SSR), and a major disease of soybean (Glycine max). A time course transcriptomic analysis was performed in both compatible and incompatible soybean lines to identify pathogenicity and developmental factors utilized by S. sclerotiorum to achieve pathogenic success.
Project description:Chinese soybean (Glycine max (L.) Merr.) cultivars Rsmv1 and Ssmv1 were used for soybean mosaic virus (SMV) resistance genes screening. The Rsmv1 cultivar was highly-resistant to SMV but the Ssmv1 cultivar was highly-susceptible. We used microarrays to detail the global programme of gene expression underlying SMV inoculation and identified distinct expression genes between Rsmv1 and Ssmv1.
Project description:To understand the molecular events underlying seed maturation, quiescence and germination, we performed transcriptome analysis of soybean (Glycine max) embryos at four seed developmental stages (cotyledon, early, mid and late maturation), mature dry seeds, and seedlings, eight days after seed sowing.
Project description:Microarray expression profiling was used to identify genes expressed in developing soybean (Glycine max) seeds that are controlled by the circadian clock. Plants with developing seeds were entrained to 12hour light: 12 hour dark cycles and sampled in constant light conditions.
Project description:To understand the molecular events underlying seed desiccation and germination, we performed transcriptome analysis of soybean (Glycine max) embryos at three seed developmental stages (early, mid and late desiccation), mature dry seeds, and three germination stages (3, 16 and 27 hour-after-imbibition).