Project description:Bacillus strains grown in LB media. Metabolite extraction from the cells was performed using 100% methanol at different growth stages.
Project description:This series represents the work described in the publication Bacillus subtilis Genome Diversity by Earl et al. (Journal of Bacteriology, accepted) Keywords: comparative genomic hybridization
Project description:First whole transcriptome assessment of a Bacillus megaterium strain. The B. megaterium DegU regulon was assessed for LB batch cultures with artificially induced degU expression. DegU is a pleiotropic regulator in B. subtilis governing adaptive responses such as secretory enzyme production.
Project description:Beneficial soil microbes like plant growth-promoting rhizobacteria (PGPR) significantly contribute to plant growth and development through various mechanisms activated by plant-PGPR interactions. However, a complete understanding of the biochemistry of the PGPR and microbial intraspecific interactions within the consortia is still enigmatic. Such complexities constrain the design and use of PGPR formulations for sustainable agriculture. Therefore, we report the application of mass spectrometry (MS)-based untargeted metabolomics and molecular networking (MN) to interrogate and profile the intracellular chemical space of PGPR Bacillus strains: B. laterosporus, B. amyloliquefaciens, B. licheniformis 1001, and B. licheniformis M017 and their consortium. The results revealed differential and diverse chemistries in the four Bacillus strains when grown separately, and also differing from when grown as a consortium. MolNetEnhancer networks revealed 11 differential molecular families that are comprised of lipids and lipid-like molecules, benzenoids, nucleotide-like molecules, and organic acids and derivatives. Consortium and B. amyloliquefaciens metabolite profiles were characterized by the high abundance of surfactins, whereas B. licheniformis strains were characterized by the unique presence of lichenysins. Thus, this work, applying metabolome mining tools, maps the microbial chemical space of isolates and their consortium, thus providing valuable insights into molecular information of microbial systems. Such fundamental knowledge is essential for the innovative design and use of PGPR-based biostimulants.
Project description:Transcriptome comparison of Bacillus subtilis Natto under sliding permissive (0.7% agar) and restrictive (1.5% agar or spo0A mutant strain) conditions. B subtilis Natto wild type cells were grown on the top of LB solid medium with 1.5% and 0.7% agar concentration (samples 1-4). B subtilis Natto wild type and spo0A derivative were grown on top of LB solid medium with 0.7% agar concentration (Sample 5-7). In first experiment, 4 biological replicates were used, while in the second experiment 3 biological replicates included. Dye swaps are included in both experiments.
Project description:To uncover the effects of KrrA regulation on gene transcription and define the bacterial response imposed by this regulation, a transcriptomic study was carried out in which Bacillus anthracis krrA was compared to WT in two growth conditions: LB in the presence or absence of ‘205.
Project description:We isolated an atmospheric contaminant, subsequently identified as a new strain of Bacillus mobilis, which showed a novel, robust, inducible filamentous sliding motility and completely colonized a bacterial culture plate in less than 48 h under some conditions. This flagella-independent sliding motility was characterized by long filamentous cells at the expanding edge, and was induced when cells were inoculated onto lawns of metabolically inactive Campylobacter jejuni cells, heat killed bacterial biomass, and milk or blood dried onto agar plates. Phosphatidylcholine (PC), bacterial membrane components, and sterile human fecal extracts were sufficient to induce filamentous expansion. Screening of eight other Bacillus spp. (five from the B. cereus group and three other Bacillus spp.) showed that filamentous motility was conserved amongst B. cereus group species to varying degrees. RNAseq of filamentously expanding cells collected from PC and milk lawn plates in comparison to rod-shaped cells from control plates revealed that genes related to metabolism, ion and amino acid transport were differently regulated, genes controlling sporulation were reduced, and some virulence genes (e.g., hblA/B/C/D and plcR) were increased. We hypothesize that the robust and conserved nature of filamentous motility in pathogenic B. cereus group species can enhance bacterial colonization during host colonization.
Project description:Bacillus strains grown in LB media. Metabolite extraction from the cells was performed using 100% methanol at different growth stages.
Project description:Transcriptomic analysis of Bacillus subtilis wild-type strain and hfq mutant in stationary phase of growth using to tiling array gene expression analysis. RNA-binding protein Hfq is a key component of the adaptive responses of many proteobacterial species. In these organisms, the importance of Hfq largely stems from its participation to regulatory mechanisms involving small non-coding RNAs. In contrast, the function of Hfq in Gram-positive bacteria has remained elusive. 97 transcription units (representing 134 genes) were found significantly different between the wild-type and the ?hfqBs strains in the stationary cultures performed in rich LB medium. This data set contains 4 samples. Expression profiles of Bacillus subtilis prototype strain (BSB1, a tryptophan-prototrophic derivative 168 strain) and a ?hfq mutant were examined 5 h after the onset of stationary phase in LB medium. Two biological replicates were analyzed.
Project description:The aim of the experiments was to determine the regulon of the Bacillus subtilis alternative sigma factor SigI. Biological relevance: To expand our knowledge about Bacillus subtilis transcriptional network under unfavorable conditions. Experimental workflow overview: Bacillus subtilis 168 trp+ (BaSysBio) was used as the genetic background. (i) sigI-rsgI knock-out, (ii) rsgI knock-out, and (iii) wr strains were cultured in LB medium to mid-exponential phase at 37°C and 52°C. Total RNA was isolated from 3 ml of the culture. rRNA was depleted from the samples with RiboMinus; subsequently RNA-seq libraries were prepared (Illumina compatible NEXTflex Rapid Directional RNA-Seq Kit, Bioo Scientific) and sequenced at the EMBL GeneCore facility. The experiment was performed in three independent replicates.