Project description:The gut microbiome can impact brain health and is altered in Parkinson’s disease (PD) patients. The vermiform appendix is a lymphoid tissue implicated in the storage and regulation of the gut microbiome. Here, we investigate changes in the functional microbiome in the appendix of PD patients relative to controls by metatranscriptomic analysis. In the PD appendix, we find microbial dysbiosis affecting lipid metabolism, particularly an upregulation of bacteria responsible for secondary bile acid synthesis. Likewise, proteomic and transcript analysis in the PD gut corroborates a disruption in cholesterol homeostasis and lipid catabolism. Bile acid analysis in the PD appendix reveals an increase in the microbially-derived, toxic secondary bile acids deoxycholic acid (DCA) and lithocholic acid (LCA). Synucleinopathy in mice induces similar microbiome alterations to those of PD patients and heightens microbial changes to gut inflammation. As observed in PD, the mouse model of synucleinopathy has elevated DCA and LCA. Raised levels of DCA and LCA can lead to liver injury, and an analysis of blood markers of liver dysfunction shows evidence of biliary abnormalities in PD patients, including elevated alkaline phosphatase and bilirubin. Increased bilirubin levels are also evident before PD diagnosis, in individuals at-risk of developing PD. In sum, microbially-derived toxic bile acids are heightened in PD and biliary changes may even precede the onset of overt motor symptoms.
Project description:The gut microbiome can impact brain health and is altered in Parkinson’s disease (PD) patients. The vermiform appendix is a lymphoid tissue implicated in the storage and regulation of the gut microbiome. Here, we investigate changes in the functional microbiome in the appendix of PD patients relative to controls by metatranscriptomic analysis. In the PD appendix, we find microbial dysbiosis affecting lipid metabolism, particularly an upregulation of bacteria responsible for secondary bile acid synthesis. Likewise, proteomic and transcript analysis in the PD gut corroborates a disruption in cholesterol homeostasis and lipid catabolism. Bile acid analysis in the PD appendix reveals an increase in the microbially-derived, toxic secondary bile acids deoxycholic acid (DCA) and lithocholic acid (LCA). Synucleinopathy in mice induces similar microbiome alterations to those of PD patients and heightens microbial changes to gut inflammation. As observed in PD, the mouse model of synucleinopathy has elevated DCA and LCA. Raised levels of DCA and LCA can lead to liver injury, and an analysis of blood markers of liver dysfunction shows evidence of biliary abnormalities in PD patients, including elevated alkaline phosphatase and bilirubin. Increased bilirubin levels are also evident before PD diagnosis, in individuals at-risk of developing PD. In sum, microbially-derived toxic bile acids are heightened in PD and biliary changes may even precede the onset of overt motor symptoms.
Project description:Metabolic products of the microbiota can alter hematopoiesis. However, the contribution and site of action of bile acids is poorly understood. Here we demonstrate that the secondary bile acids, deoxycholic acid (DCA), and lithocholic acid (LCA) increase bone marrow myelopoiesis. Treatment of bone marrow cells with DCA and LCA preferentially expanded immunophenotypic and functional (CFU-GM) granulocyte-monocyte progenitors (GMPs). DCA treatment of sorted hematopoietic stem/progenitor cells (HSPCs) increased CFU-GMs, indicating that direct exposure of HSPCs to DCA sufficed to expand GMPs. We determined that the vitamin D receptor (VDR) was required for the DCA-induced increase in CFU-GMs and GMPs. Finally, single-cell RNA sequencing revealed that DCA significantly upregulated genes associated with myeloid differentiation and proliferation in GMPs. The action of DCA on HSPCs to expand GMPs in a VDR-dependent manner suggests a mechanism for how microbiome-host interactions may directly impact bone marrow hematopoiesis and the severity of infectious and inflammatory disease.
Project description:In this study, we aimed at the characterization of C. difficile’s stress response to the main four human bile acids. Although, a phenotypically description of growth differences upon challenge with different bile acids has been described (Lewis 2016, Thanissery 2017), there is no information on the adaptation of gene expression available. We employed a comprehensive proteomics approach to record stress signatures of the unconjugated bile acids CA, CDCA, DCA and LCA in shock experiments as well as during long-term-stress conditions and could depict a general stress response concerning all four bile acids, but also specific responses to only a single or a few of the different bile acids. Our results are a starting point for the understanding of how the individual bile acids cocktail of a patient can decide on the outcome of a C. difficile infection.
Project description:In this study, we aimed at the characterization of C. difficile’s stress response to the main four human bile acids. Although, a phenotypically description of growth differences upon challenge with different bile acids has been described (Lewis 2016, Thanissery 2017), there is no information on the adaptation of gene expression available. We employed a comprehensive proteomics approach to record stress signatures of the unconjugated bile acids CA, CDCA, DCA and LCA during long-term-stress conditions and could depict a general stress response concerning all four bile acids, but also specific responses to only a single or a few of the different bile acids. Our results are a starting point for the understanding of how the individual bile acids cocktail of a patient can decide on the outcome of a C. difficile infection
Project description:In order to successfully survive in and to colonize the gastrointestinal tract, bacteria need to develop strategies to overcome bile acid stress. The most prominent bile acids are the primary bile acids cholic acid (CA) and chenodeoxycholic acid (CDCA) as well as the secondary bile acid deoxycholic acid (DCA). In this study, we investigated the stress response of E. faecalis and E. faecium to sublethal concentrations of these three bile acids on the proteome level using DIA-MS. As both species showed similar IC50 for DCA and CDCA in growth experiments and both were highly resistant towards CA, we assumed similar changes to their protein expression profiles. Moreover, we investigated proteomic differences of E. faecalis grown under aerobic or microaerophilic conditions. Our findings showed similarities, but also species-specific variations in the response to the different bile acids, which reveal potential differences in the adaptation process. DCA and CDCA had a strong effect on down-expression of proteins involved in translation, transcription and replication in E. faecalis, but to a lesser extent in E. faecium. Proteins commonly significantly altered in their expression in all bile acid treated samples were identified for both species and represent a “general bile acid response”. Among these, ABC-transporters, multi-drug transporters and proteins related to cell wall biogenesis were up-expressed in both species and thus seem to play an essential role in bile acid resistance. Specific for all E. faecalis samples was the up-expression of several subunits of a V-type ATPase and the down-expression of proteins involved in pyruvate-, citrate- and folate metabolism. Most of the differentially expressed proteins were also identified when E. faecalis was incubated with low levels of DCA at microaerophilic conditions in comparison to aerobic conditions, indicating that adaptations to bile acids and to a microaerophilic atmosphere can occur simultaneously.
Project description:Long-term dietary intake influences the structure and activity of the trillions of microorganisms residing in the human gut, but it remains unclear how rapidly and reproducibly the human gut microbiome responds to short-term macronutrient change. Here we show that the short-term consumption of diets composed entirely of animal or plant products alters microbial community structure and overwhelms inter-individual differences in microbial gene expression. The animal-based diet increased the abundance of bile-tolerant microorganisms (Alistipes, Bilophila and Bacteroides) and decreased the levels of Firmicutes that metabolize dietary plant polysaccharides (Roseburia, Eubacterium rectale and Ruminococcus bromii). Microbial activity mirrored differences between herbivorous and carnivorous mammals, reflecting trade-offs between carbohydrate and protein fermentation. Foodborne microbes from both diets transiently colonized the gut, including bacteria, fungi and even viruses. Finally, increases in the abundance and activity of Bilophila wadsworthia on the animal-based diet support a link between dietary fat, bile acids and the outgrowth of microorganisms capable of triggering inflammatory bowel disease. In concert, these results demonstrate that the gut microbiome can rapidly respond to altered diet, potentially facilitating the diversity of human dietary lifestyles. RNA-Seq analysis of the human gut microbiome during consumption of a plant- or animal-based diet.
Project description:Bile acids are potent antibacterial compounds and play an important role in shaping the microbial ecology of the gut. Here, we combined flow cytometry, growth rate measurements (OD600), and NMR- and mass spectrometry-based metabolomics to systematically profile the impact of bile acids on the microbiome using in vitro and in vivo models. This study confirmed that (1) unconjugated bile acids possess more potent antibacterial activity than conjugated bile acids; (2) Gram-positive bacteria are more sensitive to bile acids than Gram-negative bacteria; (3) some probiotic bacteria such as Lactobacillus and Bifidobacterium and 7α-dehydroxylating bacteria such as Clostridium scindens show bile acid resistance that is associated with activation of glycolysis. Moreover, we demonstrated that (4) as one of most hydrophobic bile acids, lithocholic acid (LCA) shows reduced toxicity to bacteria in the cecal microbiome in both in vivo and in vitro models; (5) bile acids directly and rapidly affect bacterial global metabolism including membrane damage, disrupted amino acid, nucleotide, and carbohydrate metabolism; and (6) in vivo, short-term exposure to bile acids significantly affected host metabolism via alterations of the bacterial community structure. This study systematically profiled interactions between bile acids and gut bacteria providing validation of previous observation and new insights into the interaction of bile acids with the microbiome and mechanisms related to bile acid tolerance.
Project description:Long-term dietary intake influences the structure and activity of the trillions of microorganisms residing in the human gut, but it remains unclear how rapidly and reproducibly the human gut microbiome responds to short-term macronutrient change. Here we show that the short-term consumption of diets composed entirely of animal or plant products alters microbial community structure and overwhelms inter-individual differences in microbial gene expression. The animal-based diet increased the abundance of bile-tolerant microorganisms (Alistipes, Bilophila and Bacteroides) and decreased the levels of Firmicutes that metabolize dietary plant polysaccharides (Roseburia, Eubacterium rectale and Ruminococcus bromii). Microbial activity mirrored differences between herbivorous and carnivorous mammals, reflecting trade-offs between carbohydrate and protein fermentation. Foodborne microbes from both diets transiently colonized the gut, including bacteria, fungi and even viruses. Finally, increases in the abundance and activity of Bilophila wadsworthia on the animal-based diet support a link between dietary fat, bile acids and the outgrowth of microorganisms capable of triggering inflammatory bowel disease. In concert, these results demonstrate that the gut microbiome can rapidly respond to altered diet, potentially facilitating the diversity of human dietary lifestyles.
Project description:The study is about the role of Bacteroides thetaiotaomicron in the human gut microbiota, specifically its ability to form biofilms in response to bile salts. The study found that bile induces the expression of certain efflux pumps, and inhibiting these pumps impairs biofilm formation. Among the induced pumps, the BipABC pump is crucial for biofilm formation as it is involved in the efflux of magnesium, which affects the biofilm's extracellular matrix and structure. This discovery sheds light on how intestinal chemical cues, like bile salts, regulate biofilm formation in B. thetaiotaomicron, a significant gut symbiont.