Project description:Staphylococcus aureus is a major human pathogen and resistant to numerous clinically used antibiotics. The first antibiotic developed for S. aureus infections was the nonribosomal petide secondary metabolite penicillin. We discovered cryptic nonribosomal peptide secondary metabolites, the aureusimines, made by S. aureus itself that are not antibiotics, but function as small molecule regulators of virulence factor expression. Using established rules and codes for nonribosomal peptide assembly we predicted these nonribosomal peptides, and used these predictions to identify them from S. aureus culture broths. Functional studies using global microarray and mouse bacteremia models established that the aureusimines control virulence factor expression and are necessary for productive infections. This is the first report of the aureusimines and has important implications for the treatment of drug resistant S. aureus. Targeting aureusimine synthesis may provide novel anti-infectives.
Project description:Staphylococcus aureus is a major human pathogen and resistant to numerous clinically used antibiotics. The first antibiotic developed for S. aureus infections was the nonribosomal petide secondary metabolite penicillin. We discovered cryptic nonribosomal peptide secondary metabolites, the aureusimines, made by S. aureus itself that are not antibiotics, but function as small molecule regulators of virulence factor expression. Using established rules and codes for nonribosomal peptide assembly we predicted these nonribosomal peptides, and used these predictions to identify them from S. aureus culture broths. Functional studies using global microarray and mouse bacteremia models established that the aureusimines control virulence factor expression and are necessary for productive infections. This is the first report of the aureusimines and has important implications for the treatment of drug resistant S. aureus. Targeting aureusimine synthesis may provide novel anti-infectives. Commerically available S. aureus GeneChips (Affymetrix) were used to compare biological replicates of early and late exponential phase wild type (Newman) and aureusimine defective (ausA) organisms.
Project description:This study aims to compared differential expression circRNA between normal and intracellular Staphylococcus aureus infection in osteoclast
Project description:In the present study, we employed Affymetrix Staphylococcus aureus GeneChip arrays to investigate the dynamics of global gene expression profiles during the cellular response of Staphylococcus aureus to peracetic acid, which involved initial growth inhibition and subsequent partial recovery. Keywords: Time course
Project description:Manganese (Mn) is an essential micronutrient critical for the pathogenesis of Staphylococcus aureus, a significant cause of human morbidity and mortality. Paradoxically, excess Mn is toxic, therefore maintaining intracellular Mn homeostasis is required for survival. To identify gene candidates that contribute to manganese detoxification, we compared the transcriptional response of S. aureus cells exposed to 1 mM MnCl2 and those that were untreated.
Project description:It is becoming increasingly apparent that Staphylococcus aureus are able to survive engulfment by macrophages, and that the intracellular environment of these cells, which is essential to innate host defenses against invading microorganisms, may in fact provide a refuge for staphylococcal survival and dissemination. Based on this, we postulated that S. aureus might induce cytoprotective mechanisms by changing gene expression profiles inside macrophages similar to obligate intracellular pathogens, such as Mycobacterium tuberculosis. In order to examine the effect of S. aureus on the macrophage transcriptome, we performed microarray expression analysis on human monocyte-derived macrophages treated with S. aureus. Keywords: time course
Project description:In the present study, we employed Affymetrix Staphylococcus aureus GeneChip arrays to investigate the dynamics of global gene expression profiles during the cellular response of Staphylococcus aureus to triclosan, which involved initial growth inhibition and metabolism. Keywords: Transcriptome study; antimicrobial response; time course
Project description:In the present study, we employed Affymetrix Staphylococcus aureus GeneChip arrays to investigate the dynamics of global gene expression profiles during the cellular response of Staphylococcus aureus to Ortho-Phenylphenol, which involved initial growth inhibition and metabolism. Keywords: Time course