Project description:Sarcophyton soft coral samples collected in Palau 2019 (Dataset includes 83 crude extracts, with two technical replicates and two injections of each, plus 10 reference samples of cembrane diterpenes isolated from soft corals from Palau or Okinawa)
Project description:Despite the fact that taro, colocasia esculenta, is an important staple food for millions of people around the world, its genome and transcriptome sequence has not yet been investigated. The objective of this study was to generate transcriptome sequence information from taro cultivars Niue, Palau 10, and Sam-07. Niue and Sam-07 are highly susceptible to the taro leaf blight (TLB) disease caused by Phytophthora colocasiae, to which Palau 10 is resistant. The analysis of the taro transcriptome will facilitate gene discovery, including genes that are responsible for TLB-resistance. Moreover, microsatellites (SSRs) developped from these data will be useful for marker-assisted breeding of improved taro cultivars, QTL mapping, and characterization of the genetic diversity in taro.
Project description:RNA Nanostring from human meningioma samples This set of data pertains to RNA extracted from 2mm core punches from the representative FFPE blocks, on which a custom codeset was run.
Project description:Information on connectivity is becoming increasingly in demand as marine protected areas are being designed as an integral part of a network to protect marine resources at the ecosystem level. Larval dispersal and population structure, however, remain very difficult to assess. Here, we tested the predictions of a detailed oceanographic connectivity model of larval dispersal and coral recruitment within Palau and between Palau and Yap, which was developed to support the review of the existing network of marine protected areas in Palau. We used high throughput microsatellite genotyping of the coral Acropora hyacinthus to characterize population genetic structure. Pairwise F' ST values between Palau and Yap (0.10), Palau and Ngulu (0.09) and Yap and Ngulu (0.09) were all significant and similar to pairwise F' ST values of sites within Palau (0.02-0.12) and within Yap (0.02-0.09) highlighting structure at island scale and indicating that recruitment may be even more localized than previously anticipated. A bottleneck test did not reveal any signs of a founder effect between Yap and Palau. Overall, the data supports the idea that recovery of A. hyacinthus in Palau did not come exclusively from a single source but most likely came from a combination of areas, including sites within Palau. In light of these results there seems to be very little connectivity around the barrier reef and management recommendation would be to increase the number or the size of MPAs within Palau.
Project description:The ability of local populations to adapt to future climate conditions is facilitated by a balance between short range dispersal allowing local buildup of adaptively beneficial alleles, and longer dispersal moving these alleles throughout the species range. Reef building corals have relatively low dispersal larvae, but most population genetic studies show differentiation only over 100s of km. Here, we report full mitochondrial genome sequences from 284 tabletop corals (Acropora hyacinthus) from 39 patch reefs in Palau, and show two signals of genetic structure across reef scales from 1 to 55 km. First, divergent mitochondrial DNA haplotypes exist in different proportions from reef to reef, causing PhiST values of 0.02 (p = 0.02). Second, closely related sequences of mitochondrial Haplogroups are more likely to be co-located on the same reefs than expected by chance alone. We also compared these sequences to prior data on 155 colonies from American Samoa. In these comparisons, many Haplogroups in Palau were disproportionately represented or absent in American Samoa, and inter-regional PhiST = 0.259. However, we saw three instances of identical mitochondrial genomes between locations. Together, these data sets suggest two features of coral dispersal revealed by occurrence patterns in highly similar mitochondrial genomes. First, the Palau-American Samoa data suggest that long distance dispersal in corals is rare, as expected, but that it is common enough to deliver identical mitochondrial genomes across the Pacific. Second, higher than expected co-occurrence of Haplogroups on the same Palau reefs suggests greater retention of coral larvae on local reefs than predicted by many current oceanographic models of larval movement. Increased attention to local scales of coral genetic structure, dispersal, and selection may help increase the accuracy of models of future adaptation of corals and of assisted migration as a reef resilience intervention.