Project description:Full clinical data for a cohort of 199 individuals with acute coronary syndrome.
Untargeted serum metabolomics using the Metabolon platform for individuals with ACS (n=156).
Serum metabolomics using the Nightingale Health (NMR) platform for individuals with ACS and controls (ACS, n=191; controls, n=961).
Project description:Untargeted metabolomics of 141 human milk samples provided by Dr. Maria Carmen Collado (Department of Biotechnology, Institute of Agrochemistry and Food Technology, National Research Council, Valencia, Spain)
Project description:Raw untargeted metabolomics profiled by Metabolon Inc. for 540 samples from healthy individuals. Files include sample names and run details which can be matched to their metagenomic sequencing samples from PRJEB11532 and PRJEB17643. Information regarding metabolite metadata is also available, including
Project description:EVP miRNAs levels were measured in the supernatant fraction of 54 human milk samples collected approximately 6 weeks postpartum from individuals in New Hampshire using the NanoString nCounter Human v3 miRNA expression panel
Project description:Breastfeeding is vital for reducing morbidity and mortality, yet exclusive breastfeeding rates are low, with insufficient milk supply being a major weaning factor whose molecular causes remain largely unknown. In this study, we collected fresh milk samples from 30 lactating individuals, classified as low, normal, or high milk producers at multiple postpartum stages, and conducted extensive genomic and microbiome analysis. Using bulk RNA sequencing on human milk fat globules (MFG), milk cells, and breast tissue, we found that MFG-derived RNA closely resembles RNA from milk luminal cells. Furthermore, bulk and single-cell RNA-seq revealed changes in the transcriptome and cellular content linked to milk production. We identified specific genes and cell-type proportions differing in low and high milk production. Infant microbiome diversity was affected by feeding type, but not by maternal milk supply. This study provides a comprehensive human milk transcriptomic catalog, identifies genes associated with milk production, and highlights MFG as a useful biomarker for milk transcriptome analysis.
Project description:Breastfeeding is vital for reducing morbidity and mortality, yet exclusive breastfeeding rates are low, with insufficient milk supply being a major weaning factor whose molecular causes remain largely unknown. In this study, we collected fresh milk samples from 30 lactating individuals, classified as low, normal, or high milk producers at multiple postpartum stages, and conducted extensive genomic and microbiome analysis. Using bulk RNA sequencing on human milk fat globules (MFG), milk cells, and breast tissue, we found that MFG-derived RNA closely resembles RNA from milk luminal cells. Furthermore, bulk and single-cell RNA-seq revealed changes in the transcriptome and cellular content linked to milk production. We identified specific genes and cell-type proportions differing in low and high milk production. Infant microbiome diversity was affected by feeding type, but not by maternal milk supply. This study provides a comprehensive human milk transcriptomic catalog, identifies genes associated with milk production, and highlights MFG as a useful biomarker for milk transcriptome analysis.
Project description:An untargeted metabolomics analysis of human milk was performed to test the hypothesis that a unique human milk metabolome would emerge based on maternal adiposity (maternal fat mass and body mass index). This study also aimed to identify differentially expressed milk metabolites that are associated with fat mass in the infant. To our knowledge this study reports on the largest cohort to date examining the metabolomic differences in human milk composition between normal weight and obese women. Data generated from this study indicate the need for further research in the area of human milk metabolomics and the potential role for human milk small molecules in contributing to offspring growth and development.
Project description:Human iPSCs and NSCs were engineered by AAVS1 and/or C13 safe-harbor TALENs which mediated targeted integration of various reporter genes at single or dual safe-harbor loci. Multiple clones of targeted human iPSCs were used to compare with parental untargeted NCRM5 iPSCs. Polyclonal targeted human NSCs were used to compare with their parental untargeted NCRM1NSCs or H9NSCs. Total RNA obtained from targeted human iPSCs or NSCs compared to untargeted control iPSCs or NSCs.
Project description:Milk and dairy products are an essential food and an economic resource in many countries. Milk component synthesis and secretion by the mammary gland involve expression of a large number of genes whose nutritional regulation remains poorly defined. We aim at understanding the genomic influence on milk quality and synthesis by comparing two sheep breeds, with different milking attitude, Sarda and Gentile di Puglia, using sheep-specific microarray technology. From sheep ESTs deposited at NCBI, we generated the first annotated microarray developed for sheep with a covering of most of the genome. Whole tissue samples of mammary gland were collected from 4 lactating individuals of two sheep (Ovis aries) breeds, Gentile di Puglia and Sarda. Biopsies of lactating mammary tissue were taken at two lactation stages (first record, stage 01: 6 days after lambing; second record, stage 02: 44 days after lambing) in both breeds. Tissues from mammary gland were immersed in RNAlater (Sigma) immediately after biopsy and stored at -20°C.
Project description:untargeted metabolomics (RPLC, positive mode) on human milk samples to investigate the presence of maternal drugs and dietary factors in breast milk