Project description:Dichloromethane (DCM) extracts of aerial parts and roots of Waltheria indica analyzed in UHPLC-MS/MS in positive ionization mode. .raw, .mzML and MzMine2 processed files(spectra .mgf and feature table .csv) are available.
References:
Cretton, Sylvian, Stéphane Dorsaz, Antonio Azzollini, Quentin Favre-Godal, Laurence Marcourt, Samad Nejad Ebrahimi, Francine Voinesco, et al. 2016. “Antifungal Quinoline Alkaloids from Waltheria Indica.” Journal of Natural Products 79 (2): 300–307.
Cretton, S., L. Breant, L. Pourrez, C. Ambuehl, L. Marcourt, S. N. Ebrahimi, M. Hamburger, et al. 2014. “Antitrypanosomal Quinoline Alkaloids from the Roots of Waltheria Indica.” Journal of Natural Products 77 (10): 2304–11.
Project description:Electrospray ionization (ESI) is often affected by corona discharge when spraying 100% aqueous solutions as the voltage that induces discharge can be well below the onset voltage of ESI. As a result, it is especially challenging to perform native mass spectrometry in negative ion mode where 100% aqueous solution is preferred. Here we report a simple instrumentation method to improve the performance of ESI in negative ion mode based on capillary vibrating sharp-edge spray ionization. By attaching a fused silica capillary emitter to a vibrating glass slide, improved signal quality is achieved for various analytes in aqueous solutions over applying ESI alone. Compared to commercial ESI sources using nebulization gas to reduce discharge, 10-100-fold enhancement in signal intensity and 3-10-fold improvement in S/N are achieved for various kinds of molecules including DNA, peptides, proteins, and oligosaccharides. Finally, the new method demonstrates utility for native mass spectrometry analysis of proteins and G-quadruplex DNA. The present method is expected to have great potential to be adopted by the scientific community because of its improved analytical performance, simplicity, and low cost.
Project description:Extracellular vesicles (EVs) are released by most cell types and are implicated in several biological and pathological processes, including multiple sclerosis (MS). In this study we performed RNA sequencing to analyze the diversity of microorganisms by assignment of reads using different taxa profilers. To diminish the risk of false positive biases derived from sample handling, we performed a similar analysis on EVs derived from known cultured bacterial species, as well as artificially-generated samples. Overall, we detect a range of microbial species in MS and healthy control (HC) samples, that are not detected in control samples, as well as species with differential abundance between MS and HC samples. These results reveal the relevance of putative communication of microbial species using EVs as a communication vector.
Project description:Desorption electrospray ionization-mass spectrometry (DESI-MS) imaging was used to analyze unmodified human brain tissue sections from 39 subjects sequentially in the positive and negative ionization modes. Acquisition of both MS polarities allowed more complete analysis of the human brain tumor lipidome as some phospholipids ionize preferentially in the positive and others in the negative ion mode. Normal brain parenchyma, comprised of grey matter and white matter, was differentiated from glioma using positive and negative ion mode DESI-MS lipid profiles with the aid of principal component analysis along with linear discriminant analysis. Principal component-linear discriminant analyses of the positive mode lipid profiles was able to distinguish grey matter, white matter, and glioma with an average sensitivity of 93.2% and specificity of 96.6%, while the negative mode lipid profiles had an average sensitivity of 94.1% and specificity of 97.4%. The positive and negative mode lipid profiles provided complementary information. Principal component-linear discriminant analysis of the combined positive and negative mode lipid profiles, via data fusion, resulted in approximately the same average sensitivity (94.7%) and specificity (97.6%) of the positive and negative modes when used individually. However, they complemented each other by improving the sensitivity and specificity of all classes (grey matter, white matter, and glioma) beyond 90% when used in combination. Further principal component analysis using the fused data resulted in the subgrouping of glioma into two groups associated with grey and white matter, respectively, a separation not apparent in the principal component analysis scores plots of the separate positive and negative mode data. The interrelationship of tumor cell percentage and the lipid profiles is discussed, and how such a measure could be used to measure residual tumor at surgical margins.
Project description:Negative ion mode nanoelectrospray ionization (nESI) is often utilized to analyze acidic compounds, from small molecules to proteins, with mass spectrometry (MS). Under high aqueous solvent conditions, corona discharge is commonly observed at emitter tips, resulting in low ion abundances and reduced nESI needle lifetimes. We have successfully reduced corona discharge in negative ion mode by trace addition of trifluoroethanol (TFE) to aqueous samples. The addition of as little as 0.2% TFE increases aqueous spray stability not only in nESI direct infusion, but also in nanoflow liquid chromatography (nLC)/MS experiments. Negative ion mode spray stability with 0.2% TFE is approximately 6× higher than for strictly aqueous samples. Upon addition of 0.2% TFE to the mobile phase of nLC/MS experiments, tryptic peptide identifications increased from 93 to 111 peptides, resulting in an average protein sequence coverage increase of 18%.
Project description:We have used the Single-probe, a miniaturized sampling device utilizing in-situ surface microextraction for ambient mass spectrometry (MS) analysis, for the high resolution MS imaging (MSI) of negatively charged species in the positive ionization mode. Two dicationic compounds, 1,5-pentanediyl-bis(1-butylpyrrolidinium) difluoride [C5(bpyr)2F2] and 1,3-propanediyl-bis(tripropylphosphonium) difluoride [C3(triprp)2F2], were added into the sampling solvent to form 1+ charged adducts with the negatively charged species extracted from tissues. We were able to detect 526 and 322 negatively charged species this way using [C5(bpyr)2F2] and [C3(triprp)2F2], respectively, including oleic acid, arachidonic acid, and several species of phosphatidic acid, phosphoethanolamine, phosphatidylserine, phosphatidylglycerol, phosphatidylinositol, and others. In conjunction with the identification of the non-adduct cations, we have tentatively identified a total number of 1200 and 828 metabolites from mouse brain sections using [C5(bpyr)2F2] and [C3(triprp)2F2], respectively, through high mass accuracy measurements (mass error <5 ppm); MS/MS analyses were also performed to verify the identity of selected species. In addition to the high mass accuracy measurement, we were able to generate high spatial resolution (~17 μm) MS images of mouse brain sections. Our study demonstrated that utilization of dicationic compounds in the surface microextraction with the Single-probe device can perform high mass and spatial resolution ambient MSI measurements of broader types of compounds in tissues. Other reagents can be potentially used with the Single-probe device for a variety of reactive MSI studies to enable the analysis of species that are previously intractable.
Project description:Mass spectrometry imaging is a powerful tool to analyze a large number of metabolites with their spatial coordinates collected throughout the sample. However, the significant differences in ionization efficiency pose a big challenge to metabolomic mass spectrometry imaging. To solve the challenge and obtain a complete data profile, researchers typically perform experiments in both positive and negative ionization modes, which is time-consuming. In this work, we evaluated the use of the dicationic reagent, 1,5-pentanediyl-bis(1-butylpyrrolidinium) difluoride (abbreviated to [C5(bpyr)2]F2) to detect a broad range of metabolites in the positive ionization mode by infrared matrix-assisted laser desorption electrospray ionization mass spectrometry imaging (IR-MALDESI MSI). [C5(bpyr)2]F2 at 10 µM was doped in 50% MeOH/H2O (v/v) electrospray solvent to form +1 charged adducted ions with anionic species (-1 charged) through post-electrospray ionization. This method was demonstrated with sectioned rat liver and hen ovary. A total of 73 deprotonated metabolites from rat liver tissue sections were successfully adducted with [C5(bpyr)2]2+ and putatively identified in the adducted positive ionization polarity, along with 164 positively charged metabolite ions commonly seen in positive ionization mode, which resulted in 44% increased molecular coverage. In addition, we were able to generate images of hen ovary sections showing their morphological features. Following-up tandem mass spectrometry (MS/MS) indicated that this dicationic reagent [C5(bpyr)2]2+ could form ionic bonds with the headgroup of glycerophospholipid ions. The addition of the dicationic reagent [C5(bpyr)2]2+ in the electrospray solvent provides a rapid and effective way to enhance the detection of metabolites in positive ionization mode.