Project description:Compare with the gastric cavity without cancerous transformation in atrophic gastritis, analyze the microbiota and metabolomics changes in intestinal type of gastric cancer under the background of atrophic gastritis, and explore the relevant mechanisms.
Project description:Molecular networking connects mass spectra of molecules based on the similarity of their fragmentation patterns. However, during ionization, molecules commonly form multiple ion species with different fragmentation behavior. As a result, the fragmentation spectra of these ion species often remain unconnected in tandem mass spectrometry-based molecular networks, leading to redundant and disconnected sub-networks of the same compound classes. To overcome this bottleneck, we develop Ion Identity Molecular Networking (IIMN) that integrates chromatographic peak shape correlation analysis into molecular networks to connect and collapse different ion species of the same molecule. The new feature relationships improve network connectivity for structurally related molecules, can be used to reveal unknown ion-ligand complexes, enhance annotation within molecular networks, and facilitate the expansion of spectral reference libraries. IIMN is integrated into various open source feature finding tools and the GNPS environment. Moreover, IIMN-based spectral libraries with a broad coverage of ion species are publicly available.
Project description:Previous studies have demonstrated that the iron content in marine heterotrophic bacteria is comparatively higher than that of phytoplankton. Therefore, they have been indicated to play a major role in the biogeochemical cycling of iron. In this study, we aimed to investigate the potential of viral lysis as a source of iron for marine heterotrophic bacteria. Viral lysates were derived from the marine heterotrophic bacterium, Vibrio natriegens PWH3a (A.K.A Vibrio alginolyticus). The bioavailability of Fe in the lysates was determined using a model heterotrophic bacterium, namely, Dokdonia sp. strain Dokd-P16, isolated from Fe-limited waters along Line P transect in the Northeastern Pacific Ocean. The bacteria were grown under Fe-deplete or Fe-replete conditions before being exposed to the viral lysate. Differential gene expression following exposure to the viral lysate was analyzed via RNA sequencing to identify differentially expressed genes under iron-replete and iron-deplete conditions. This study would provide novel insights into the role of viral lysis in heterotrophic bacteria in supplying bioavailable iron to other marine microorganisms under iron-limiting and non-limiting conditions. First, the marine heterotrophic bacterium genome, Dokdonia sp. strain Dokd-P16, was sequenced to provide a genomic context for the expression studies. Subsequently, the relative gene expression in Dokdonia sp. strain Dokd-P16 grown under Fe limiting and non-limiting conditions were analyzed. This transcriptomic approach would be utilized to elucidate genes regulated by Fe availability in Dokdonia sp. strain Dokd-P16, which indicate its Fe-related response viral lysate exposure. Taken together, in this study, the transcriptomic responses of Fe-limited and non-limited marine heterotrophic bacteria were analyzed, which provided novel insights into the biological availability of Fe from the viral lysates.
Project description:The interplay between pathogens and hosts has been studied for decades using targeted approaches such as the analysis of mutants and host immunological responses. Although much has been learned from such studies, they focus on individual pathways and fail to reveal the global effects of infection on the host. To alleviate this issue, high-throughput methods such as transcriptomics and proteomics have been used to study host-pathogen interactions. Recently, metabolomics was established as a new method to study changes in the biochemical composition of host tissues. We report a metabolomics study of Salmonella enterica serovar Typhimurium infection. We used Fourier Transform Ion Cyclotron Resonance Mass Spectrometry with Direct Infusion to reveal that dozens of host metabolic pathways are affected by Salmonella in a murine infection model. In particular, multiple host hormone pathways are disrupted. Our results identify unappreciated effects of infection on host metabolism and shed light on mechanisms used by Salmonella to cause disease, and by the host to counter infection. Female C57BL/6 mice were infected with Salmonella enterica serovar Typhimurium SL1344 cells by oral gavage. Feces and livers were collected and metabolites extracted using acetonitrile. For experiments with feces, samples were collected from 4 mice before and after infection. For liver experiments, 11 uninfected and 11 infected mice were used. Samples were combined into 3 groups of 3-4 mice each, resulting in the analysis of 3 group samples of uninfected and 3 of infected mice. Extracts were infused into a 12-T Apex-Qe hybrid quadrupole-FT-ICR mass spectrometer equipped with an Apollo II electrospray ionization source, a quadrupole mass filter and a hexapole collision cell. Raw mass spectrometry data were processed as described elsewhere (Han et al. 2008. Metabolomics. 4:128-140 [PMID 19081807]). To identify differences in metabolite composition between uninfected and infected samples, we filtered the list of masses for metabolites which were present on one set of samples but not the other. Additionally, we calculated the ratios between averaged intensities of metabolites from uninfected and infected mice. To assign possible metabolite identities, monoisotopic neutral masses of interest were queried against MassTrix (http://masstrix.org). Masses were searched against the Mus musculus database within a mass error of 3 ppm. Data were analyzed by unpaired t tests with 95% confidence intervals.