Project description:MS/MS fragmentation data on bile acid standards were acquired on the QE - with a gradient developed to separate between isomeric pairs on a Polar C18 column and a fragmentation energy of NCE 45.
Project description:Specific bile acids are potent signaling molecules that modulate metabolic pathways affecting lipid, glucose and bile acid homeostasis, and the microbiota. Bile acids are synthesized from cholesterol in the liver, and the key enzymes involved in bile acid synthesis (Cyp7a1, Cyp8b1) are regulated transcriptionally by the nuclear receptor FXR. We have identified an FXR-regulated pathway upstream of a transcriptional repressor that controls multiple bile acid metabolism genes. We identify MafG as an FXR target gene and show that hepatic MAFG overexpression represses genes of the bile acid synthetic pathway and modifies the biliary bile acid composition. In contrast, loss-of-function studies using MafG(+/-) mice causes de-repression of the same genes with concordant changes in biliary bile acid levels. Finally, we identify functional MafG response elements in bile acid metabolism genes using ChIP-seq analysis. Our studies identify a molecular mechanism for the complex feedback regulation of bile acid synthesis controlled by FXR.
Project description:Liver sinusoidal endothelial cells (LSEC) are unique endothelial cell typelining the sinusoids of the liver and we have shown that these cells respond in a unique matter when exposed to saturated and unsaturated free fatty acids (FFA) and bile acids. We used microarray to analyze the transcriptional differences between the LSEC exposed to free fatty acids and bile acid receptor agonists to further shed light on their role in non-alcoholic fatty liver disease. The Murine Liver Sinusoidal Endothelial Cell Line (TSEC) was treated with palmitic and oleic acid or the bile acid receptor agonist INT-767 for 8 hours. Total RNA was then harvested to determine transcriptional differences.
Project description:Bile acid return from the intestine and attendant signaling is necessary for liver regeneration after partial hepatectomy or CCl4 injury
Project description:Bile acids act as ligands for several nuclear receptors expressed in the small intestine, especially the terminal ileum. Bile acid pool composition can be influenced by health and disease states. Here, we used RNA-seq to investigate the effects of altering bile acid pool composition on gene expression in ileal organoids.
Project description:In addition to their role as a digestive detergent, bile acids have the ability to modulate the expression of genes. The intestinal content of cholic acids (CA) fluctuated in response to the daily feeding-fasting cycle; therefore, we hypothesized that the temporal accumulation of CA may affect the expression of genes in intestinal epithelial cells. To screen bile acid-regulated genes, we performed oligonucleotide microarray analyses using RNA isolated from the CA-treated intestinal cells of mice. Several types of genes were screened as candidates for bile acid-regulated genes. They included genes that encoded lipid metabolism-related proteins, receptors, transcriptional factors, and plasma-membrane transporters. Total 2 samples were derived from [1] vehicle (0.05% DMSO and 0.25% ethanol)-treated intestinal epithelial cells of mice and [2] cholic acid (CA)-treated intestinal epithelial cells of mice.