GNPS - Microbial regulation of soil water repellency to control soil degradation
Ontology highlight
ABSTRACT: Soil water repellency (SWR) (i.e. soil hydrophobicity or decreased soil wettability) is a major cause of global soil degradation and a key agricultural concern. This metabolomics data will support the larger effort measuring soil water repellency and soil aggregate formation caused by microbial community composition through a combination of the standard drop penetration test, transmission electron microscopy characterization and physico-chemical analyses of soil aggregates at 6 timepoints. Model soils created from clay/sand mixtures as described in Kallenbach et al. (2016, Nature Communications) with sterile, ground pine litter as a carbon/nitrogen source were inoculated with 15 different microbial communities known to have significantly different compositions based on 16S rRNA sequencing. This data will allow assessment of the direct influence of microbial community composition on soil water repellency and soil aggregate stability, which are main causes of soil degradation.
The work (proposal:https://doi.org/10.46936/10.25585/60001346) conducted by the U.S. Department of Energy Joint Genome Institute (https://ror.org/04xm1d337), a DOE Office of Science User Facility, is supported by the Office of Science of the U.S. Department of Energy operated under Contract No. DE-AC02-05CH11231.
INSTRUMENT(S): Q Exactive
ORGANISM(S): Microbiome
SUBMITTER: Marie Kroeger
PROVIDER: MSV000094090 | GNPS | Wed Feb 14 17:31:00 GMT 2024
REPOSITORIES: GNPS
ACCESS DATA