A Synthetic Community System for Probing Microbial Interactions Driven by Exometabolites
Ontology highlight
ABSTRACT: Though most microorganisms live within a community, we have modest knowledge about microbial interactions and their implications for community properties and ecosystem functions. To advance understanding of microbial interactions, we describe a straightforward synthetic community system that can be used to interrogate exometabolite interactions among microorganisms. The filter plate system (also known as the Transwell system) physically separates microbial populations, but allows for chemical interactions via a shared medium reservoir. Exometabolites, including small molecules, extracellular enzymes, and antibiotics, are assayed from the reservoir using sensitive mass spectrometry. Community member outcomes, such as growth, productivity, and gene regulation, can be determined using flow cytometry, biomass measurements, and transcript analyses, respectively. The synthetic community design allows for determination of the consequences of microbiome diversity for emergent community properties and for functional changes over time or after perturbation. Because it is versatile, scalable, and accessible, this synthetic community system has the potential to practically advance knowledge of microbial interactions that occur within both natural and artificial communities. See publications: https://journals.asm.org/doi/10.1128/mSystems.00129-17 and https://journals.asm.org/doi/10.1128/mSystems.00493-20 and https://www.biorxiv.org/content/10.1101/2021.09.05.459016v2.full.
The work (proposal:https://doi.org/10.46936/10.25585/60000724) conducted by the U.S. Department of Energy Joint Genome Institute (https://ror.org/04xm1d337), a DOE Office of Science User Facility, is supported by the Office of Science of the U.S. Department of Energy operated under Contract No. DE-AC02-05CH11231.
INSTRUMENT(S): Q Exactive
ORGANISM(S): Synthetic Microbiome
SUBMITTER: Ashley Shade
PROVIDER: MSV000093275 | MassIVE | Thu Nov 02 12:44:00 GMT 2023
REPOSITORIES: MassIVE
ACCESS DATA