Project description:The aim of this study is to understand how NMV can affect the vascular integrity of the blood-brain barrier using a cell line- hCMEC/D3. Recent studies have reported that NMV can affect other endothelial barriers in the body contributing to inflammation and pathogenesis of diseases such as atherosclerosis. The transcriptomic profile of NMV-treated hCMEC/D3 cells was compared to that of cells without treatment to understand whether functional groupings and pathways are differentially expressed, which can contribute to changes in blood-brain barrier.
Project description:To study the impact of inflammation on the blood-brarrier permeability we choose to expose hCMEC/D3 cells, a blood-brain barrier cell line, to interleukin-6 as an inflammatory marker.
Project description:Functional and structural dysfunction of the blood brain barrier (BBB) leads to severe alterations in brain physiology and is believed to trigger neurodegeneration. To investigate the molecular mechanisms driving the BBB dysfunction, very few human BBB cell culture models are available; of which, the human microvascular endothelial cell line (hCMEC/D3) is the most widely used. Thus far, array-based approaches or targeted seqeuncing based approaches have been employed to characterize the gene expression of the hCMEC/D3 model. However,The goal of this study is to perform deep transcriptomic sequencing of the BBB cell line and obtain features like gene expression, expressed single nucleotide variants, alternate splice forms, circular RNAs, long non-coding RNAs and micro RNAs. We have developed blood brain barriers transcriptomics landscape using RNA sequencing and micro RNA seqeuncing data obtained from replicates of hCMEC/D3 BBB cell line.
Project description:Functional and structural dysfunction of the blood brain barrier (BBB) leads to severe alterations in brain physiology and is believed to trigger neurodegeneration. To investigate the molecular mechanisms driving the BBB dysfunction, very few human BBB cell culture models are available;of which, the human microvascular endothelial cell line (hCMEC/D3) is the most widely used. Thus far, array-based approaches or targeted seqeuncing based approaches have been employed to characterize the gene expression of the hCMEC/D3 model. However,The goal of this study is to perform deep transcriptomic sequencing of the BBB cell line and obtain features like gene expression, expressed single nucleotide variants, alternate splice forms, circular RNAs, long non-coding RNAs and micro RNAs. We have developed blood brain barriers transcriptomics landscape using RNA and micro RNA sequencing data obtained from replicates of hCMEC/D3 BBB cell line.
Project description:Functional and structural dysfunction of the blood brain barrier (BBB) leads to severe alterations in brain physiology and is believed to trigger neurodegeneration. To investigate the molecular mechanisms driving the BBB dysfunction, very few human BBB cell culture models are available;of which, the human microvascular endothelial cell line (hCMEC/D3) is the most widely used. Thus far, array-based approaches or targeted seqeuncing based approaches have been employed to characterize the gene expression of the hCMEC/D3 model. However,The goal of this study is to perform deep transcriptomic sequencing of the BBB cell line and obtain features like gene expression, expressed single nucleotide variants, alternate splice forms, circular RNAs, long non-coding RNAs and micro RNAs.
Project description:Functional and structural dysfunction of the blood brain barrier (BBB) leads to severe alterations in brain physiology and is believed to trigger neurodegeneration. To investigate the molecular mechanisms driving the BBB dysfunction, very few human BBB cell culture models are available; of which, the human microvascular endothelial cell line (hCMEC/D3) is the most widely used. Thus far, array-based approaches or targeted seqeuncing based approaches have been employed to characterize the gene expression of the hCMEC/D3 model. However,The goal of this study is to perform deep transcriptomic sequencing of the BBB cell line and obtain features like gene expression, expressed single nucleotide variants, alternate splice forms, circular RNAs, long non-coding RNAs and micro RNAs.
Project description:The experiment was designed to look at the effect (on gene expression) of exposing human cerebromicrovascular endothelial cell line hCMEC/D3 to trimethylamine (0.4 micromolar) or trimethylamine N-oxide (40 micromolar) for 24 h, to determine if circulating metabolites have the potential to affect integrity of the blood-brain barrier.
Project description:The human immortalized brain endothelial cell line hCMEC/D3 is considered an in vitro model of the blood-brain-barrier. We aimed to characterize changes in the secretome of hCMEC/D3 subjected to oxygen and glucose deprivation (OGD) by SILAC, in order to identify new proteins involved in ischemia-triggered blood-brain-barrier disruption and test their potential as blood biomarkers for ischemic stroke diagnosis. After SILAC analysis, 19 proteins were found differentially secreted between OGD and normoxia/normoglycemia conditions (Fold Change>|1.4| and peptide count≥2). Protein folding and nucleic acid binding were the main molecular functions and epithelial adherens junctions and aldosterone signaling appeared as the main canonical pathways represented by OGD-secreted proteins. ANXA1, CLUS, IGFBP2, PRDX3, TIMP2 and COL1A2 were replicated by western blotting in 9 independent cell cultures. Five replicated proteins were analyzed in human serum samples of 38 ischemic stroke patients compared to 18 stroke-mimicking conditions and 18 healthy controls by ELISA. IGFBP2 showed increased blood levels when strokes were compared with stroke-mimicking patients (p<0.1). In conclusion, we characterized changes in the secretome of hCMEC/D3 after an ischemic insult and highlighted some candidates to become biomarkers for ischemic stroke diagnosis related to blood-brain-barrier disruption.
Project description:Over-expression of miR-155 induces changes in the pattern of gene expression of hCMEC/D3 cells. hypothesis tested in the present study was that miR-155 constitute an important regulatory control of the brain endothelial response to inflammatory cytokines. To identify miR-155 target genes in brain endothelim that might be implicated in BBB dysfunction relevant to human disease, we then analysed changes in mRNA expression of hCMEC/D3 cells that overexpress miR-155 and results were contrasted to cells transfected with scrambled miR. To ectopically express miR-155 in hCMEC/D3 cells, 30 nM of pre-miR-155 and the siPORT Amine transfection agent (Applied Biosystems, Warrington, UK) were combined following the manufacturerM-bM-^@M-^Ys instructions.
Project description:This study aims to map the dynamics of insulin-responsive pathways in polarized human cerebral microvascular endothelial cell (hCMEC/D3) monolayers, a widely used BBB cell culture model, to elucidate molecular mechanisms underlying BBB dysfunction in AD.