Characterization of long-term IL-33 administration as an animal model of pulmonary arterial hypertension
Ontology highlight
ABSTRACT: Pulmonary arterial hypertension (PAH) is characterized by severe obstruction of small pulmonary arteries and concomitant high pulmonary arterial pressure, resulting in progressive right ventricular failure. Previously, we demonstrated that long-term interleukin (IL)-33 administration in mice induced severe occlusive arterial hypertrophy in the lung, which was mediated by group 2 innate lymphoid cells (ILC2s). In response to IL-33, ILC2s accumulated around blood vessels and produced IL-5, leading to perivascular eosinophil recruitment. In this study, we further characterized IL-33-induced pulmonary arterial hypertrophy. We first demonstrated that long-term IL-33 administration caused an increase in the right ventricular pressure. In IL-33 deficient mice, pulmonary arterial hypertrophy mediated by eggs of Schistosoma mansoni (S. mansoni) was attenuated, accompanied with partial reduction in ILC2s, eosinophils and CD4+ T cells. In addition, proteomic analysis revealed dramatic changes in urine samples from mice treated with IL-33 or S. mansoni eggs. Resistin like alpha (RELM), a pulmonary hypertension-related molecule, in the urine was commonly detected in both treatments. Large amounts of RELM were observed in the lung from IL-33-treated mice. These observations support that IL-33-induced pulmonary arterial hypertrophy is a useful model to study the mechanism underlying development of PAH and expolar biomarkers to indicate the onset of PAH.
ORGANISM(S): Mus Musculus (mouse)
SUBMITTER: Susumu Nakae
PROVIDER: PXD055773 | JPOST Repository | Fri Sep 27 00:00:00 BST 2024
REPOSITORIES: jPOST
ACCESS DATA