Project description:The vertebrate heart is the first organ to form in the embryo and is composed of mesodermal progenitors that arise in an area termed the cardiac crescent. These give rise not only to muscle cells but also to a variety of other cell types, all of which work together to allow the heart to beat rhythmically. Current understanding of when and how these different cell types arise during early cardiogenesis is limited. Therefore, we microdissected the cardiac crescent region of mouse embryos at different stages of development -from when the structure is first present until the linear heart tube (LHT) stage- and performed single-cell RNA-sequencing. The present submission contains pilot data from the LHT.
Project description:Cell activation is a vital step for T cell memory/effector differentiation as well as for productive HIV infection. To identify novel regulators of this process, we used next generation sequencing to profile changes in microRNA expression occurring in purified human naive CD4 T cells in response to TCR stimulation and HIV infection. HIV infection had no significant impact on global miR expression in quiescent nave CD4 T cells. We identified miR-34c-5p as a novel miR strongly induced by TCR stimulation of nave CD4 T cells, and found that it was consistently down-regulated in response to viral infection. Over-expression of miR-34c-5p had a positive effect on HIV-1 replication. Finally, we demonstrated that miR-34c-5p alters the expression of several genes involved in TCR signaling and cell activation, identifying it as a novel regulator of nave CD4 T cell activation potentially targeted by HIV infection.
Project description:Cyanobacteria are photoautotrophs that profoundly impact the biogeochemical cycles on Earth. Due to their photosynthetic lifestyle that includes the fixation of atmospheric CO2, they are of increasing interest for a sustainable economy. Knowledge of protein expression and regulation is key for understanding of the cyanobacterial metabolism; however, proteome studies in cyanobacteria are still limited and cover only a fraction of the theoretical proteome. Here, we performed a proteogenomic analysis of 628 LC-MS/MS measurements for the unicellular model cyanobacterium Synechocystis sp. PCC 6803 to characterize the expressed (phospho)proteome, re-annotate known and discover potential novel open reading frames (ORFs). By mapping extensive shotgun MS proteomics data generated by the SCyCode consortium onto a six-frame translation of the Synechocystis genome, we re-annotated 96 start sites and discovered 103 novel open reading frames (ORFs). Through re-analysis of previously published multi-omics datasets, we confirmed 48 re-annotated or novel ORFs with high confidence. Our study resulted in the largest reported proteome and phosphoproteome dataset for Synechocystis, covering expression of about 80% of the theoretical proteome and 642 O-phosphorylation events under various cultivation conditions, such as nitrogen or carbon limitation. This dataset will serve as a resource providing dedicated information on condition-dependent protein expression and phosphorylation.
Project description:This study consists of 24 genome-wide methylation profiles which have been generated from blood and saliva samples collected from ten volunteers in the Personal Genome Project UK. The Personal Genome Project UK aims to create publicly available genome, health and trait data, and these ten volunteers represent the pilot study (PGP-UK10) and the first three genome donation participants. These samples were bisulphite converted using the EZ DNA methylation kit (Zymo), using the alternative incubation conditions recommended for HumanMethylation450 BeadChip (Illumina). Genome-wide DNA methylation was then profiled using the HumanMethylation450 BeadChip (Illumina).
Project description:As a member of the tetratricopeptide repeat (TPR) family, TTC7A is expected to mediate a wide range of interactions with proteins within several molecular complexes. TTC7A is expressed in hematopoietic and epithelial cells however its cellular function remains poorly understood. In this regard we performed a global transcriptional profiling by using HTA-2 microarrays on 4 healthy donors and 6 patients carrying distinct TTC7A mutations.