IGF-I-induced FoxO3a nuclear-cytoplasmic pulsing dynamics in mammary epithelial cell lines following treatment with increasing doses of an AKT inhibitor. Dataset 1 of 3: single-cell reporter measurements.
Ontology highlight
ABSTRACT:
SUBMITTER: Somponnat Sampattavanich, Bernhard Steiert
Project description:Neuroblastoma is a pediatric tumor of the peripheral sympathetic nervous system with a highly variable prognosis. Activation of the PI3K/AKT pathway in neuroblastoma is correlated with poor patient prognosis, but the precise downstream effectors mediating this effect have not been determined. Here, we identify the forkhead transcription factor FOXO3a as a key target of the PI3K/AKT pathway in neuroblastoma. FOXO3a expression was elevated in low stage neuroblastoma tumors and normal embryonal neuroblasts, but reduced in late stage neuroblastoma. Inactivation of FOXO3a by AKT was essential for neuroblastoma cell survival. Treatment of neuroblastoma cells with the dual PI3K/mTOR inhibitor PI-103 activated FOXO3a and triggered apoptosis. This effect was rescued by FOXO3a silencing. Conversely, apoptosis induced by PI-103 or the AKT inhibitor MK-2206 was potentiated by FOXO3a overexpression. Further, levels of total or phosphorylated FOXO3a correlated closely with apoptotic sensitivity to MK-2206. In clinical specimens, there was an inverse relationship between gene expression signatures regulated by PI3K signaling and FOXO3a transcriptional activity. Moreover, high PI3K activity and low FOXO3a activity were each associated with an extremely poor prognosis. Our work indicates that expression of FOXO3a and its targets offer useful prognostic markers as well as biomarkers for PI3K/AKT inhibitor efficacy in neuroblastoma. Affymetrix U133 Plus 2.0 profiling of SY5Y-TetR-FOXO3A cells treated with doxycycline and/or the PI3K/mTOR inhibitor PI-103. Each condition profiled in triplicate.
Project description:BACKGROUND:FOXO3a has been widely regarded as a tumor suppressor. It also plays a paradoxical role in regulating the cancer stem cells (CSCs), responsible for tumor-initiation, chemo-resistance, and recurrence in various solid tumors, including oral squamous cell carcinoma (OSCC). This study aims to uncover the role of FOXO3a and its importance for a non-canonical pathway of TGFβ in regulating the OSCC stemness. METHODS:We identified FOXO3a expression in OSCC tissues and cell lines using immunohistochemistry and western blot. The correlation between FOXO3a and stemness was evaluated. Stable cell lines with differential expression of FOXO3a were constructed using lentiviruses. The effects of FOXO3a on stem-cell like properties in OSCC was further evaluated in vitro and in vivo. We also explored the effect of TGFβ on FOXO3a with respect to its expression and function. FINDINGS:Our findings suggest that FOXO3a was widely expressed and negatively correlated with the stemness in OSCC. This regulation can be abolished by TGFβ through phosphorylation, nuclear exclusion, and degradation in the non-Smad pathway. We also observed that non-Smad AKT-FOXO3a axis is essential to regulate stemness of CSCs by TGFβ. INTERPRETATION:TGFβ induces stemness through non-canonical AKT-FOXO3a axis in OSCC. Our study provides a foundation to understand the mechanism of CSCs and a possible therapeutic target to eliminate CSCs.
Project description:p27 localization and expression has prognostic and predictive value in cancer. Little is known regarding expression patterns of p27 in renal cell carcinoma (RCC) or how p27 participates in disease progression or response to therapy.RCC-derived cell lines, primary tumors, and normal renal epithelial cells were analyzed for p27 expression, phosphorylation (T157 of the NLS), and subcellular localization. RCC-derived cell lines were treated with phosphatidylinositol 3-kinase (PI3K) and mammalian target of rapamycin (mTOR) inhibitors and effects on p27 localization were assessed. The potential contribution of cytoplasmic p27 to resistance to apoptosis was also evaluated.p27 was elevated in tumors compared with matched controls, and cytoplasmic mislocalization of p27 was associated with increasing tumor grade. Cytoplasmic localization of p27 correlated with phosphorylation at T157, an AKT phosphorylation site in the p27 NLS. In RCC cell lines, activated PI3K/AKT signaling was accompanied by mislocalization of p27. AKT activation and phosphorylation of p27 was associated with resistance to apoptosis, and small interfering RNA knockdown of p27 or relocalization to the nucleus increased apoptosis in RCC cells. Treatment with the PI3K inhibitors LY294002 or wortmannin resulted in nuclear relocalization of p27, whereas mTOR inhibition by rapamycin did not.In RCC, p27 is phosphorylated at T157 of the NLS, with increasing tumor grade associated with cytoplasmic p27. PI3K inhibition (which reduces AKT activity) reduces T157 phosphorylation and induces nuclear relocalization of p27, whereas mTOR inhibition does not. Clinical testing of these findings may provide a rational approach for use of mTOR and PI3K/AKT pathway inhibitors in patients with RCC.
Project description:Growth factor-induced activation of protein kinase-B (PKB), also known as AKT, induces pro-survival signaling and inhibits activation of pro-apoptotic signaling molecules including the Forkhead box O-3a (FOXO3a) transcription factor and caspase in transformed prostate cells in vitro. Earlier we reported that Withaferin-A (WA), a small herbal molecule, induces pro-apoptotic response-4 (Par-4) mediated apoptosis in castration-resistant prostate cancer (CRPC) cells. In the present study, we demonstrate that inhibition of AKT facilitates nuclear shuttling of FOXO3a where it regulates Par-4 transcription in CRPC cells. FOXO3a is upstream of Par-4 signaling, which is required for induction of apoptosis in CRPC cells. Promoter bashing studies and Ch-IP analysis confirm a direct interaction of FOXO3a and Par-4; a sequential deletion of FOXO3a-binding sites in the Par-4 promoter fails to induce Par-4 activation. To confirm these observations, we either overexpressed AKT or silenced FOXO3a activation in CRPC cells. Both methods inhibit Par-4 function and apoptosis is significantly compromised. In xenograft tumors derived from AKT-overexpressed CRPC cells, FOXO3a and Par-4 expression is downregulated, leading to aggressive tumor growth. Oral administration of WA to mice with xenograft tumors restores FOXO3a-mediated Par-4 functions and results in inhibited tumor growth. Finally, an inverse correlation of nuclear localization of AKT expression corresponds to cytoplasmic Par-4 localization in human prostate tissue array. Our studies suggest that Par-4 is one of the key transcriptional targets of FOXO3a, and Par-4 activation is required for induction of apoptosis in CRPC cells. Activation of FOXO3a appears to be an attractive target for the treatment of CRPC and molecules such as WA can be explored further for the treatment of CRPC.