LINCS MCF 10A Common Project: Rolling-time-point sensitivity measures of the MCF 10A breast cell line to 8 small molecule perturbagens. Dataset 2 of 15: End-point cell counts and normalized growth rate inhibition values for all technical replicates of biological replicate 2.
Project description:Single-cell messenger RNA sequencing (scRNA-seq) has emerged as a powerful tool to study cellular heterogeneity within complex tissues. Subpopulations of cells with common gene expression profiles can be identified by applying unsupervised clustering algorithms. However, technical variance is a major confounding factor in scRNA-seq, not least because it is not possible to replicate measurements on the same cell. Here, we present BEARscc, a tool that uses RNA spike-in controls to simulate experiment-specific technical replicates. BEARscc works with a wide range of existing clustering algorithms to assess the robustness of clusters to technical variation. We demonstrate that the tool improves the unsupervised classification of cells and facilitates the biological interpretation of single-cell RNA-seq experiments.
Project description:pRm1132f isolated from Sinorhizobium meliloti is a group III rolling-circle-replicating (RCR) plasmid. At least seven of eight open reading frames in the nucleotide sequence represented coding regions. The minimal replicon contained a rep gene and single- and double-stranded origins of replication. Detection of single-stranded plasmid DNA confirmed that pRm1132f replicated via an RCR mechanism.
Project description:Mutant p53 is not only deficient in tumor suppression but also acquires additional activity, called gain of function. Mutant p53 gain of function is recapitulated in knock-in mice that carry one null allele and one mutant allele of the p53 gene. These knock-in mice develop aggressive tumors compared with p53-null mice. Recently, we and others showed that tumor cells carrying a mutant p53 are addicted to the mutant for cell survival and resistance to DNA damage. To further define mutant p53 gain of function, we used the MCF-10A three-dimensional model of mammary morphogenesis. MCF-10A cells in three-dimensional culture undergo a series of morphological changes and form polarized and growth-arrested spheroids with hollow lumen, which resembles normal glandular architectures in vivo. Here, we found that endogenous wild-type p53 in MCF-10A cells was not required for acinus formation, but knockdown of endogenous wild-type p53 (p53-KD) led to partial clearance of cells in the lumen due to decreased apoptosis. Consistent with this, p53-KD altered expression patterns of the cell adhesion molecule E-cadherin, the cytoskeletal marker β-catenin, and the extracellular matrix protein laminin V. We also found that ectopic expression of the mutant G245S led to a phenotype similar to p53-KD, whereas a combination of ectopic expression of siRNA-resistant G245S with p53-KD led to a less cleared lumen. In contrast, ectopic expression of mutant R248W, R175H, and R273H disrupted normal acinus architectures with filled lumen and led to formation of irregular and multiacinus structures regardless of p53-KD. In addition, these mutants altered normal expression patterns and/or levels of E-cadherin, β-catenin, laminin V, and tight junction marker ZO-1. Furthermore, epithelial-to-mesenchymal transitions (EMT) markers, Snail, Slug, and Twist, were highly induced by mutant p53 and/or p53-KD. Together, we postulate that EMT represents a mutant p53 gain of function and mutant p53 alters cell polarity via EMT.
Project description:This study investigated the use of DNA amplification fingerprinting (DAF) to identify biomarkers useful in the elucidating genetic factors that lead to carcinogenesis. The DNA amplification fingerprinting (DAF) technique was used to generate fingerprint profiles of a normal human mammary epithelial cell line (MCF-10A) and a human breast cancer cell line (MCF-7). When compared with one another, a polymorphic biomarker gene (262 base pairs (bps)) was identified in MCF-10A but was not present in MCF-7. This gene was cloned from the genomic DNA of the MCF-10A cell line, and subjected to Genbank database analysis. The analysis of the nucleotide sequence polymorphic marker (Genbank account: AC079630) shows that this biomarker has 100% homology with the nucleotide sequence of human chromosome 12 BAC RP11-476D10 (bps 19612-19353). The nucleotide sequence was used for possible protein translation product and the result obtained indicated that the gene codes for hypothetical protein XF2620. In order to evaluate the effects that the 262 bps biomarker would have on the morphology of MCF-7 cells, it was transfected into MCF-7 cells. There were observable changes in the morphology of the transfected cells. These changes included an increase in cell elongation and a decrease in cell aggregation.
Project description:A comparison of different energetics based techniques for the characterization of two mammalian breast cell lines, MCF-7 a luminal A breast cancer cell line and MCF-10A a normal human breast cell line. The techniques of stability of proteins from rates of oxidation (SPROX), thermal proteome profiling (TPP), and conventional expression level analyses were compared and the relative advantages and disadvantages are discussed.
Project description:Microarray data are susceptible to a wide-range of artifacts, many of which occur on physical scales comparable to the spatial dimensions of the array. These artifacts introduce biases that are spatially correlated. The ability of current methodologies to detect and correct such biases is limited.We introduce a new approach for analyzing spatial artifacts, termed 'conditional residual analysis for microarrays' (CRAM). CRAM requires a microarray design that contains technical replicates of representative features and a limited number of negative controls, but is free of the assumptions that constrain existing analytical procedures. The key idea is to extract residuals from sets of matched replicates to generate residual images. The residual images reveal spatial artifacts with single-feature resolution. Surprisingly, spatial artifacts were found to coexist independently as additive and multiplicative errors. Efficient procedures for bias estimation were devised to correct the spatial artifacts on both intensity scales. In a survey of 484 published single-channel datasets, variance fell 4- to 12-fold in 5% of the datasets after bias correction. Thus, inclusion of technical replicates in a microarray design affords benefits far beyond what one might expect with a conventional 'n = 5' averaging, and should be considered when designing any microarray for which randomization is feasible.CRAM is implemented as version 2 of the hoptag software package for R, which is included in the Supplementary information.
Project description:Technical replicates, consisting of four independent hybridizations of the same labelled cRNA, were performed to determine array-to-array reproducibility. After normalization, correlation index between all replicates exceeded 98%.
Project description:Technical variance is a major confounding factor in single-cell RNA sequencing, not least because measurements on the same cell are not replicable. We developed BEARscc, a tool that simulates experiment-specific technical replicates based on a probabilistic model of technical variance trained on RNA spike-in measurements. We demonstrate that the tool improves the unsupervised classification of cells and aids the interpretation of single-cell RNA-seq experiments.
Project description:We have compared the proteome, transcriptome and metabolome of two isogenic cell lines: MCF-10A, derived from human breast epithelium, and the mutant MCF-10A-H1047R. These cell lines differ by a single amino acid substitution (H1047R) caused by single nucleotide change in one allele of the PIK3CA gene which encodes the catalytic subunit p110α of phosphatidylinositol 3-kinase (PI3K). The H1047R mutation of PIK3CA is one of the most frequently encountered somatic cancer-specific mutations. In MCF-10A, this mutation induces an extensive cellular reorganization that far exceeds the known signaling activities of PI3K. The changes are highly diverse; with examples in structural protein levels, the DNA repair machinery and sterol synthesis. Gene set enrichment analysis reveals a highly significant concordance of the genes differentially expressed in MCF-10A-H1047R cells and the established protein and RNA signatures of basal breast cancer. No such concordance was found with the specific gene signatures of other histological types of breast cancer. Our data document the power of a single base mutation, inducing an extensive remodeling of the cell toward the phenotype of a specific cancer. 2 cell lines (H1047R and WT), 4 time points (0, 6, 12, 24 hours), 3 replicates
Project description:UnlabelledIntroductionNon-transformed mammary epithelial cell lines such as MCF-10A recapitulate epithelial morphogenesis in three-dimensional (3D) tissue culture by forming acinar structures. They represent an important tool to characterize the biological properties of oncogenes and to model early carcinogenic events. So far, however, these approaches were restricted to cells with constitutive oncogene expression prior to the set-up of 3D cultures. Although very informative, this experimental setting has precluded the analysis of effects caused by sudden oncoprotein expression or withdrawal in established epithelial cultures. Here, we report the establishment and use of a stable MCF-10A cell line (MCF-10Atet) fitted with a novel and improved doxycycline (dox)-regulated expression system allowing the conditional expression of any transgene.MethodsMCF-10Atet cells were generated by stable transfection with pWHE644, a vector expressing a second generation tetracycline-regulated transactivator and a novel transcriptional silencer. In order to test the properties of this new repressor/activator switch, MCF-10Atet cells were transfected with a second plasmid, pTET-HABRAF-IRES-GFP, which responds to dox treatment with the production of a bi-cistronic transcript encoding hemagglutinin-tagged B-Raf and green fluorescent protein (GFP). This improved conditional expression system was then characterized in detail in terms of its response to various dox concentrations and exposure times. The plasticity of the phenotype provoked by oncogenic B-RafV600E in MCF-10Atet cells was analyzed in 3D cultures by dox exposure and subsequent wash-out.ResultsMCF-10Atet cells represent a tightly controlled, conditional gene expression system. Using B-RafV600E as a model oncoprotein, we show that its sudden expression in established 3D cultures results in the loss of acinar organization, the induction of an invasive phenotype and hallmarks of epithelial-to-mesenchymal transition (EMT). Importantly, we show for the first time that this severe transformed phenotype can be reversed by dox wash-out and concomitant termination of oncogene expression.ConclusionsTaken together, we have generated a stable MCF-10A subline allowing tight dox-controlled and reversible expression of any transgene without the need to modify its product by introducing artificial dimerization or ligand-binding domains. This system will be very valuable to address phenomena such as EMT, oncogene addiction, oncogene-induced senescence and drug resistance.