Project description:Maternal plasma samples collected longitudinally from pregnant women were profiled using SomaLogic aptamer-based assays in women with normal pregnancy and those who delivered preterm. DiagnosisGA is the gestational age at diagnosis with any disease indicated by the Group variable, and it is set to NA for normal pregnancies. In the Group variable, sPTD stands for spontaneous preterm delivery, and PPROM for preterm premature rupture of membranes. Additional longitudinal samples of the controls, including the two samples included herein, are also available and described in PMID: 28738067.
Project description:Fatal COVID-19 is often complicated by hypoxemic respiratory failure and acute respiratory distress syndrome (ARDS). Mechanisms governing lung injury and repair in ARDS remain poorly understood because there are no biomarker-targeted therapeutics for patients with ARDS. We hypothesized that plasma proteomics may uncover unique biomarkers that correlate with disease severity in COVID-19 ARDS. We analyzed the circulating plasma proteome from 32 patients with ARDS and COVID-19 using an aptamer-based platform, which measures 7289 proteins, and correlated protein measurements with sequential organ failure assessment (SOFA) scores at 2 time points (Days 1 and 7 following ICU admission). We compared differential protein abundance and SOFA scores at each individual time point and identified 119 proteins at Day 1 and 46 proteins at Day 7 that correlated with patient SOFA scores. We modeled the relationship between dynamic protein abundance and changes in SOFA score between Days 1 and 7 and identified 39 proteins that significantly correlated with changes in SOFA score. Using Ingenuity Pathway Analysis, we identified increased ephrin signaling and acute phase response signaling correlated with increased SOFA scores over time, while pathways related to pulmonary fibrosis signaling and wound healing had an inverse relationship with SOFA scores between Days 1 and 7. These findings suggest that persistent inflammation may drive worsened disease severity, while repair processes correlate with improvements in organ dysfunction over time. This approach is generalizable to more diverse ARDS cohorts for identification of protein biomarkers and disease mechanisms as we strive towards targeted therapies in ARDS.
Project description:Background: Macrophage-based immune dysregulation plays a critical role in development of delayed gastric emptying in animal models of diabetes. Human studies have also revealed loss of anti-inflammatory macrophages and increased expression of genes associated with pro-inflammatory macrophages in full thickness gastric biopsies from gastroparesis patients. Aim: We aimed to determine broader protein expression (proteomics) and protein-based signaling pathways in full thickness gastric biopsies of diabetic (DG) and idiopathic gastroparesis (IG) patients. Additionally, we determined correlations between protein expressions, gastric emptying and symptoms. Methods: Full-thickness gastric antrum biopsies were obtained from nine DG, seven IG patients and five non-diabetic controls. Aptamer-based SomaLogic tissue scan that quantitatively identifies 1300 human proteins was used. Protein fold changes were computed, and differential expressions were calculated using Limma. Ingenuity Pathway Analysis and correlations were carried out. Multiple-testing corrected p-values <0.05 were considered statistically significant. Results: 73 proteins were differentially expressed in DG, 132 proteins in IG and 40 proteins were common to DG and IG. In both DG and IG, “Role of Macrophages, Fibroblasts and Endothelial Cells” was the most statistically significant altered pathway (DG FDR: 7.9x10-9; IG FDR: 6.3x10-12). In DG, properdin expression correlated with GCSI-bloating (r: -0.99, FDR: 0.02) and expressions of prostaglandin G/H synthase 2, protein kinase C zeta type and complement C2 correlated with 4 hr gastric retention (r: -0.97, FDR: 0.03 for all). No correlations were found between proteins and symptoms or gastric emptying in IG. Conclusions: Protein expression changes suggest a central role of macrophage-driven immune dysregulation and complement activation in gastroparesis.
Project description:In mitosis, chromosomes achieve their characteristic shape through condensation, an essential process for proper segregation of the genome during cell division. A classical model for mitotic chromosome condensation proposes that non-histone proteins act as a structural framework called the chromosome scaffold. The components of the chromosome scaffold, such as DNA topoisomerase IIα (TOP2A) and structural maintenance of chromosomes protein 2 (SMC2), are necessary to generate stable mitotic chromosomes; however, the existence of this scaffold remains controversial. The aim of this study was to determine the protein composition of the chromosome scaffold. We used the DT40 chicken cell line to isolate mitotic chromosomes and extract the associated protein fraction, which could contain the chromosome scaffold. MS revealed a novel component of the chromosome scaffold, bromodomain adjacent to zinc finger 1B (BAZ1B), which was localized to the mitotic chromosome axis. Knocking out BAZ1B caused prophase delay because of altered chromosome condensation timing and mitosis progression errors, and the effect was aggravated if BAZ1A, a BAZ1B homolog, was simultaneously knocked out; however, protein composition of prometaphase chromosomes was normal. Our results suggest that BAZ1 proteins are essential for timely chromosome condensation at mitosis entry. Further characterization of the functional role of BAZ1 proteins would provide new insights into the timing of chromosome condensation.
Project description:Dilated cardiomyopathy (DCM) is the most common form of cardiomyopathy and main indication for heart transplantation in children. Therapies specific to pediatric DCM remains limited due to lack of a disease model. Our previous study showed that treatment of neonatal rat ventricular myocytes (NRVMs) with non-failing or DCM pediatric patient serum activates the fetal gene program (FGP). Here we show that serum treatment with Proteinase K prevents activation of the FGP, whereas RNase treatment exacerbates it, suggesting that circulating proteins, but not circulating microRNAs, promote these pathological changes. Evaluation of the protein secretome showed that midkine (MDK) is up-regulated in DCM serum, and NRVM treatment with MDK activates the FGP. Changes in gene expression in serum-treated NRVMs, evaluated by next-generation RNA sequencing (RNA-Seq), indicates extracellular matrix remodeling and focal adhesion pathways are upregulated in pediatric DCM serum and serum-treated NRVMs, suggesting alterations in cellular stiffness. Cellular stiffness was evaluated by Atomic Force Microscopy, which showed an increase in stiffness in DCM serum-treated NRVMs. Of the proteins increased in DCM sera, secreted frizzled related protein 1 (sFRP1) was a potential candidate for the increase in cellular stiffness, and sFRP1 treatment of NRVMs recapitulated the increase in cellular stiffness observed in response to DCM-serum treatment. Our results show that serum circulating proteins promote pathological changes in gene expression and cellular stiffness, and circulating miRNAs are protective against pathological changes.