Project description:We developed three different protein arrays to measure IgG autoantibodies associated with Connective Tissue Diseases (CTDs), Anti-Cytokine Antibodies (ACA), and anti-viral antibody responses in 147 hospitalized COVID-19 patients in three different centers.
Project description:We developed three different protein arrays to measure IgG autoantibodies associated with Connective Tissue Diseases (CTDs), Anti-Cytokine Antibodies (ACA), and anti-viral antibody responses in 147 hospitalized COVID-19 patients in three different centers.
Project description:Breastfeeding provides defense against infectious disease during early life. The mechanisms underlying this protection are complex but likely include the vast array of immune cells and components, such as immunoglobulins, in milk. Simply characterizing the concentrations of these bioactives, however, provides only limited information regarding their potential relationships with disease risk in the recipient infant. Rather, understanding pathogen and antigen specificity profiles of milk-borne immunoglobulins might lead to a more complete understanding of how maternal immunity impacts infant health and wellbeing. Milk produced by women living in 11 geographically dispersed populations was applied to a protein microarray containing antigens from 16 pathogens, including diarrheagenic E. coli, Shigella spp., Salmonella enterica serovar Typhi, Staphylococcus aureus, Streptococcus pneumoniae, Mycobacterium tuberculosis and other pathogens of global health concern, and specific IgA and IgG binding was measured. Our analysis identified novel disease-specific antigen responses and suggests that some IgA and IgG responses vary substantially within and among populations. Patterns of antibody reactivity analyzed by principal component analysis and differential reactivity analysis were associated with either lower-to-middle-income countries (LMICs) or high-income countries (HICs). Antibody levels were generally higher in LMICs than HICs, particularly for Shigella and diarrheagenic E. coli antigens, although sets of S. aureus, S. pneumoniae, and some M. tuberculosis antigens were more reactive in HICs. Differential responses were typically specific to canonical immunodominant antigens, but a set of nondifferential but highly reactive antibodies were specific to antigens possibly universally recognized by antibodies in human milk. This approach provides a promising means to understand how breastfeeding and human milk protect (or do not protect) infants from environmentally relevant pathogens. Furthermore, this approach might lead to interventions to boost population-specific immunity in at-risk breastfeeding mothers and their infants.
Project description:Protein microarray was used to identify proteins with elevated interactions with serum autoantibodies in a responding patient with rhabdomyosarcoma before and after multiple doses of HER2 CAR T cell therapy. Elevated signals were observed for multiple proteins interacting with serum autoantibodies following multiple doses of HER2-CAR T cell treatment when compared to pre-treatment serum.
Project description:Pulmonary arterial hypertension (PAH) affects approximately 10% of patients with systemic sclerosis (SSc) and is a leading cause of death. We sought to identify serum cytokine signatures that risk stratify SSc patients for this potentially fatal complication. In the current study we aimed to characterize specific cytokine signatures that differentiate patients with incident SSc-PAH, patients at high risk for SSc-PAH, patients at low risk for SSc-PAH, and healthy controls. We anticipate these data will assist with early identification of patients at high risk for or with incident SSc-PAH. Additionally, we expect this study will identify cytokines that may be involved in the pathogenesis of SSc-PAH and could serve as therapeutic targets.
Project description:Pulmonary arterial hypertension (PAH) affects approximately 10% of patients with systemic sclerosis (SSc) and is a leading cause of death. We sought to identify serum cytokine signatures that risk stratify SSc patients for this potentially fatal complication. In the current study we aimed to characterize specific cytokine signatures that differentiate patients with incident SSc-PAH, patients at high risk for SSc-PAH, patients at low risk for SSc-PAH, and healthy controls. We anticipate these data will assist with early identification of patients at high risk for or with incident SSc-PAH. Additionally, we expect this study will identify cytokines that may be involved in the pathogenesis of SSc-PAH and could serve as therapeutic targets.
Project description:Hematopoietic stem cells (HSCs) primarily reside in the bone marrow, where they receive external cues from their local microenvironment. The complex milieu of biophysical cues, cellular components, and cell-secreted factors regulates the process by which HSC produce the blood and immune system. We previously showed direct co-culture of primary murine hematopoietic stem and progenitor cells with a population of marrow-derived mesenchymal stromal and progenitor cells (MSPCs) in a methacrylamide-functionalized gelatin (GelMA) hydrogel improves hematopoietic progenitor maintenance. However, the mechanism by which MSPCs influenced HSC fate decisions remained unknown. Herein, we report the use of proteomic analysis to correlate HSC phenotype to a broad candidate pool of 200 soluble factors produced by combined mesenchymal and hematopoietic progeny. Partial Least Squares Regression (PLSR), along with an iterative filter method, identified TGFβ-1, MMP-3, c-RP, and TROY as positively correlated with HSC maintenance. Experimentally, we then observe exogenous stimulation of HSC monocultures in GelMA hydrogels with these combined cytokines increases the ratio of hematopoietic progenitors to committed progeny after a 7-day culture 7.52 ± 3.65 fold compared to non-stimulated monocultures. Findings suggest a cocktail of the downselected cytokines amplify hematopoietic maintenance potential of HSCs beyond that of MSPC-secreted factors alone. This work integrates empirical and computation methods to identify cytokine combinations to improve HSC maintenance within an engineered HSC niche, suggesting a route towards identifying feeder-free culture platforms for HSC expansion.
Project description:Established that 11 human anti-Plasmodium vivax Duffy Binding protein II monoclonal antibodies are not cross reactive with other plasmodium antigens as represented by PfPv500.1 array.
Project description:Endoglin (EDG) is a cell surface protein with an important role in the establishment of neo-angiogenesis and vasculogenic mimicry. EDG is part of the transforming growth factor-β (TGF-β) family, acting as an important co-receptor. EDG is shed from the cell surface into the extracellular compartment by matrix metalloproteinase 14 (MMP14), in its soluble form (sEDG). Both transmembrane and soluble forms of EDG exert important signaling functions in the development of new blood vessels and tumour progression. To better understand the role of EDG in Ewing sarcoma (ES), a deadly neoplasm of late childhood and adolescence, we test the efficacy of OMTX703, an endoglin-targeting antibody-drug conjugate in ES8 xenograft. Having determined an optimal dose for OMTX703, an additional experiment was conducted to assess the mechanism(s) of OMTX703 action and its potential mechanism(s) of resistance following a 2-week exposure to OMTX703 at 0, 10, 30, and 60 mg/kg; 246 proteins were assessed by reverse-phase protein array (RPPA). Analysis of variance (ANOVA), Pearson’s correlation as distance metric and Ward’s linkage as the clustering method using a false discovery rate (FDR) of 0.01, identified 60 proteins that discriminated between treatment groups (Matrix#1-Normalized Values). To investigate the proteomic changes associated with the heightened clinical activity of the 60 mg/kg dose, a secondary analysis was performed, which grouped the 10 mg/kg OMTX703 samples and the 10 mg/kg OMTX003 ones with the placebo-treated samples (Matrix#2-Normalized Values). Using a FDR of 0.0001, an absolute log2 fold change of 1.5, Pearson’s correlation as distance metric and Ward’s linkage as the clustering method, 22 proteins were discriminately identified between the 3 treatment groups (Matrix#2-Normalized Values). Notably, a protein regulator of altered metabolism (RPS6) was exclusively upregulated following OMTX703 (60mg/kg), and a second metabolism biomarker (LDHA) was down-expressed in the 30 and 60 mg/kg-treated groups. Conversely, BRD4 was one of about a dozen proteins that were preferentially down-regulated in samples treated only by 60 mg/kg.