Project description:Two known settlement/metamorphosis inducing stimuli (crustose coralline algae, and ethanolic extract of crustose coralline algae) and one stimulus which just induces metamorphosis (LWamide) were used to stimulate competent planula larvae of the coral Acropora millepora. Samples were taken 0.5h, 4h and 12h post induction isolate the genes controlling settlement and metamorphosis in this coral.
Project description:A mutualistic relationship between reef-building corals and endosymbiotic algae (Symbiodinium spp.) forms the basis for the existence of coral reefs. Genotyping tools for Symbiodinium spp. have added a new level of complexity to studies concerning cnidarian growth, nutrient acquisition, and stress. For example, the response of the coral holobiont to thermal stress is connected to the host-Symbiodinium genotypic combination, as different partnerships can have different bleaching susceptibilities. If, and to what extent, differences in algal symbiont clade contents can exert effects on the coral host transcriptome is currently unknown. In this study, we monitored algal physiological parameters and profiled the coral host transcriptional responses in acclimated, thermally stressed, and recovered coral fragments using a custom cDNA gene expression microarray. Combining these analyses with results from algal and host genotyping revealed a striking symbiont effect on both the acclimated coral host transcriptome and the magnitude of the thermal stress response. This is the first study that links coral host transcriptomic patterns to the clade content of their algal symbiont community. Our data provide a critical step to elucidating the molecular basis of the apparent variability seen among different coral-algal partnerships.
Project description:A thermal stress experiment on Heron Island (Great Barrier Reef) which involved a slow ramp in temperature over one week and then sampling after 4 days at 32 degrees was completed. Control samples were maintained at 27C. The idea of the experiment was to study bleaching from a single cell perspective and thus look at cell condition (both animal and host) in symbio (inside the host tissue) and compare it with the physiological/macromolecular composition of the expelled symbionts (dinoflagellates). Are the cells expelled from the coral host during thermal stress are a result of host stress or algae stress. We took samples for proteomics from the extracted endoderm cells (in symbio) and also of expelled cells. Samples were collected as the symbio left the host. These were flash frozen. Are the symbiont cells expelled from the coral host during thermal stress are a result of host stress or algae stress?
Project description:Coral reefs are declining globally. Temperature anomalies disrupt coral-algal symbioses at the molecular level, causing bleaching and mortality events. In terrestrial mutualisms, diversity in pairings of host and symbiont individuals (genotypes) results in ecologically and evolutionarily relevant stress response differences. The extent to which such intraspecific diversity provides functional variation in coral-algal systems is unknown. Here we assessed functional diversity among unique pairings of coral and algal individuals (holobionts). We targeted six genetically distinct Acropora palmata coral colonies that all associated with a single, clonal Symbiodinium ‘fitti’ strain in a natural common garden. No other species of algae or other strains of S. ‘fitti’ could be detected in host tissues. When colony branches were experimentally exposed to cold stress, host genotype influenced the photochemical efficiency of the symbiont strain, buffering the stress response to varying degrees. Gene expression differences among host individuals with buffered vs. non-buffered symbiont responses included biochemical pathways that mediate iron availability and oxygen stress signaling—critical components of molecular interactions with photosynthetic symbionts. Spawning patterns among hosts reflected symbiont performance differences under stress. These data are some of the first to indicate that genetic interactions below the species level affect coral holobiont performance. Intraspecific diversity serves as an important but overlooked source of physiological variation in this system, contributing raw material available to natural selection. Note: in the final publication, only ambient and cold treatments are discussed, but there was an additional hot treatment for each genotype at 34C. Most colonies expired after 6 hours, so PAM data could not be collected. The microarray data from 3.5 hours are included here.
Project description:This data comes from coral samples taken during four years in Hawaii. We identified a class of lipids which predicts differences in coral bleaching phenotype across time.
This data is unpublished yet and any use have to be informed to their corresponding PIs.
Project description:The endosymbiotic interaction established by cnidarians and photosynthetic dinoflagellate algae is the foundation of coral reef ecosystems. This essential interaction is globally threatened to breakdown by anthropogenic disturbance. As such, it is compelling to understand the molecular mechanisms underpinning the cnidarian-algal association. We investigated phosphorylation-mediated protein signaling as a mechanism of regulation of the cnidarian-algal interaction, and we report on the generation of the first phosphoproteome for the coral model system Aiptasia. Using mass spectrometry-based phosphoproteomics in data-independent acquisition (DIA) allowed consistent quantification of over 3,000 phosphopeptides totaling more than 1,600 phosphoproteins across aposymbiotic (symbiont-free) and symbiotic anemones. Additionally, to allow for discrimination between translational regulation and post-translational phosphorylation, we generated a total proteome dataset from the same anemones and used it for phosphopeptide normalization against protein amount. While quantification of protein phosphorylation relied upon the generation of a spectrum library generated by data-dependent acquisition (DDA), total protein quantification in DIA was conducted "library-free" (directDIA) in SpectronautX. DirectDIA allowed consistent quantification of 20,215 peptides, totaling 4,121 proteins (3,518 protein groups) across biological samples.
Project description:Florida’s coral reefs are currently experiencing a multi-year disease-related mortality event, that has resulted in massive die-offs in multiple coral species. Approximately 21 species of coral, including both Endangered Species Act-listed and the primary reef-building species, have displayed tissue loss lesions which often result in whole colony mortality [Stony Coral Tissue Loss Disease (SCTLD)]. Determining the causative agent(s) of coral disease relies on a multidisciplinary approach since the causation may be a combination of abiotic, microbial or viral agents. Metaproteomics was used to survey changes in the molecular landscape in the coral holobiont with the goal of providing useful information not only in diagnosis, but for prediction and prognosis. Specifically, in the case of SCTLD, defining molecular changes in the coral holobiont will help define disease progression and aid in identifying the causative agent by clearly defining traits of disease progression shared across affected species. Using samples from nine coral species (46 samples total; those appearing healthy, n = 23, and diseased, n = 23), analysis of the coral and its associated microbiome were performed using bottom-up proteomics. Ongoing analysis (including improving coral holobiont genome-based search space) will demonstrate the utility of this approach and help define improved future experiments.